• Title/Summary/Keyword: Organic light-emitting-diode display

Search Result 211, Processing Time 0.025 seconds

Implementation of Charge-Pump Active-Matrix OLED Panel with $64\;{\times}\;64$ Pixels Using $ITO/SiO_2/ITO$ Capacitors and a-Si:H Schottky Diodes

  • Na, Se-Hwan;Seo, Jong-Wook;Kwak, Mi-Young;Shim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1267-1270
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel with $64\;{\times}\;64$ pixels utilizing the charge-pump (CP) pixel addressing method was fabricated using conventional thin-film processes. Each pixel consists of a-Si:H Schottky diode and $ITO/SiO_2/ITO$ capacitor. It is shown that CP-OLED is technically feasible for information display and a driving voltage below $4V_{pp}$ is enough for nominal operation.

  • PDF

Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes (알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드)

  • Lee, Ho-Nyeon;Lee, Young-Gu;Jung, Jong-Guk;Lee, Seung-Eui;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

Thin-Film Photosensors for OLED Flat-Panel Displays

  • Cok, Ronald S.;Nishikawa, Ryuji;Ogawa, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.277-280
    • /
    • 2004
  • Thin-film photosensors on organic light emitting diode (OLED) glass substrates using active-matrix OLED TFT manufacturing processes have been constructed and optimized, and their performance has been characterized. Suitable control circuitry and applications are proposed. The photosensors may be integrated into OLED displays for detection of ambient illumination and for detection of OLED light emission, thereby enabling output, uniformity, and aging compensation.

  • PDF

P-OLED Microdisplay Technology

  • Underwood, Ian;Buckley, Alastair;Yates, Chris
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-110
    • /
    • 2006
  • The highly integrated nature of polymer based organic light emitting diode (POLED) microdisplay technology, coupled with low voltage and low power electroluminescent light generation, combine to offer a very promising technology for use in portable and personal electronics products. We briefly describe the technology before discussing how to engineer the color gamut using whiteemitting polymer materials, microcavity device structure and color filter absorbance.

  • PDF

Advancements in Bonding Technologies for Flexible Display Driver IC(DDI) Packaging (Flexible DDI Package의 Bonding 기술 발전)

  • Kyeong Tae Kim;Yei Hwan Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.10-17
    • /
    • 2024
  • This paper discusses Chip On Film (COF) technology, one of the key technologies in flexible packaging to enable miniaturization and flexibility of electronic devices. COF attaches Display Driver IC (DDI) directly to a flexible polyimide substrate, enabling lightweight and reduced thickness for high-resolution displays. COF technology is primarily used in high-performance display panels, such as organic light emitting diode (OLED) displays, and plays a key role in portable electronic devices, such as smartphones and wearable devices. This study analyzes the key components of COF and advances in bonding technology. In particular, the introduction of modern bonding techniques, such as thermo-compression bonding and thermo-sonic bonding, has led to significant improvements in bonding reliability and electrical performance. These bonding techniques enhance the mechanical stability of COF packages while maintaining high electrical connectivity in fine-pitch structures. This paper will discuss the future development of COF bonding technology and its challenges and explore its potential as a next-generation display and advanced packaging technology.

Synthesis of Conjugated Copolymers with phenothiazine and Azomethine Units and their Electro-Optic Properties

  • Seo, Hyeon-Jin;Jang, Byeung-Jo;Chang, Jin-Gyu;Park, Lee-Soon
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • Three types of conjugated polymers, poly(PZ-Pi), poly(PZ-BPI) and poly(PZ-NPI) were synthesized by Schiff-base reaction. These new conjugated polymers exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as azomethine groups, Double layer LEDs made with the synthesized polymers as emitting layer and $Alq_3$, as electron transporting layer exhibited enhanced EL emission and efficiency compared to those of single layer LEDs. Double layer LEDs exhibited gradual shift in the emission peak th the single layer LED, made of only $Alq_3$ as the emitting layer as the thickness of $Alq_3$ layer increased.

  • PDF

A Study on Vacuum-deposited Transparent OLED to Improve Its Transmittance and Luminescence Characteristics with a Mesh Electrode (진공 증착 투명 OLED 투과도 및 발광 특성 개선을 위한 Mesh 전극 연구)

  • Young Woo Kim;Yongmin Jeon;Eou-Sik Cho;Sang Jik Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.82-86
    • /
    • 2024
  • With the growing field and growing interest in transparent organic light-emitting diodes (TOLED) in the industry, various attempts are being made to improve the transmittance and performance of TOLED. TOLEDs are expected to be used in next-generation displays such as mixture reality (MR) displays, displayable windows, televisions, etc. This study presents a mesh TOLED with better transmittance and luminescence characteristics than existing TOLEDs through an in-situ vacuum deposition method that does not require additional processes such as photolithography and etching. In this study the mesh TOLED's cathode consists of Mg: Ag 1:9 electrode. Mesh patterns are interconnected with a 6 nm layer of interlayer. We approached transmittance improvement up to 30% at 555 nm at the cathode electrode with similar current injection character, also we improved lumination characteristics up to 23% at 7 V driving condition.

  • PDF

Depth sensitivity of stereoscopic displays

  • Choi, Byeong-Hwa;Choi, Dong-Wook;Lee, Ja-Eun;Lee, Seung-Bae;Kim, Sung-Chul
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • Depth sensitivity is considered one of the factors influencing 3D displays the most. In this paper, the perceptual 3D depth was quantitatively measured to compare the depth difference among the display devices. No difference was found in the typical display performance among the devices, but the subjective evaluation of the depth sensitivity where the disparity was varied showed that the organic light emitting diode (OLED) had the highest performance, mainly due to its almost 0% crosstalk, one of the features of OLED. Crosstalk is a form of image superposition that greatly affects the depth sensitivity. The experiment results showed that the quantitative depth sensitivity varies due to geometric factors such as disparity, viewing distance, and subjective sensitivity, depending on the display image characteristics, such as crosstalk and contrast.

Fashion Accessory Design Suggestions Using Firework Images with the OLED Display Platform (불꽃놀이 형상과 OLED를 기반으로 한 패션 액세서리 디자인 제안)

  • Kim, Sun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1188-1198
    • /
    • 2011
  • This study proposes the use of firework shapes to design fashion accessories in the judgment that they are appropriate for the expression of creative images in consideration of the display of fireworks as a kind of entertainment and a festive symbol. This study promotes the sustainable application of firework shapes to develop the designs of fashion culture items that feature a distinctive personality and uniqueness. In this present study, the proposed fashion accessory design was intended to create an entertaining new atmosphere that uses an Organic Light Emitting Diode (OLED) that draws attention as a futuristic display. In terms of methodology, a literature review of firework shapes and OLED was conducted; in addition, Adobe Illustrator CS2 and Adobe Photoshop CS2 were used to develop six different standard motive designs with formative design elements represented by a variety of firework shapes. Each of the six motifs was further expanded with different color combinations. Rich images are produced with the use of pink, blue, purple, green, yellow, orange, and red, in conjunction with various OLED effects to express the three-dimensional images of fireworks. The motifs are applied to three types of items: bags, bracelets, and necklaces. For the video images, evening and tote bags, pendants, and bangles were used. Shifting images and lights should produce unique images as well as satisfy the consumer desire for entertainment. The Adobe Image Ready software was used to present the motive of fireworks applied to the design of fashion accessories in video images but not in still-cut images due to physical constraints of this paper.

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF