• 제목/요약/키워드: Organic light-emitting diodes

검색결과 749건 처리시간 0.03초

전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성 (Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes)

  • 안희철;주현우;나수환;한원근;김태완;이원재;정동회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

White Organic Light-Emitting Diodes with Color Stability

  • Seo, Ji-Hoon;Park, Jung-Sun;Koo, Ja-Ryong;Seo, Bo-Min;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국응용과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.357-361
    • /
    • 2009
  • The authors have demonstrated white oraganic light-emitting diodes (WOLED) using 1,4-bis[2-(4'-diphenylaminobiphenyl-4-yl)vinyl]benzene as fluorescent blue emitter and iridium(III) bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate as phosphorescent red emitter. The optimized WOLED using red host material as bis(2-methyl-8-quinolinato) -4-phenylphenolate exhibited proper color stability in comparison with the control device using 4,4'-N,N'-dicarbazole-biphenyl as red host. The white device showed a maximum luminance of 21100 $cd/m^2$ at 14 V, luminous efficiency of 9.7 cd/A at 20 $mA/cm^2$, and Commission Internationale de I'Eclairage ($CIE_{x,y}$)coordinates of (0.32, 0.34) at 1000 $cd/m^2$. The devices also exhibited the color shift with ${\Delta}CIE_{x,y}$ coordinates of ${\pm}$ (0.01,0.01) from 100 to 20000 $cd/m^2$.

Polymer Dispersed Liquid Crystal for Enhanced Light Out-Coupling Efficiency of Organic Light Emitting Diodes

  • Gasonoo, Akpeko;Ahn, Hyeon-Sik;Lee, Jonghee;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.140-146
    • /
    • 2020
  • We investigated light extraction film based on polymer dispersed liquid crystal (PDLC) for application in organic light emitting diodes (OLEDs). At least 30 seconds of direct UV irradiation process for curing PDLC film on a bottom-emitting OLEDs was successfully achieved without damage on the intrinsic properties of the OLED. We demonstrated that high haze and transmittance can be tuned simultaneously by controlling the UV curing time. By adding PDLC as an external layer without any additional treatment, the light scattering and extraction is increased. Consequently, a PDLC scattering film with 89.8% and 59.9 of total transmittance and haze respectively, achieved about 16% of light intensity enhancement from integrating sphere measurement.

수치해석적 모델링을 이용한 다층박막형 유기발광소자(OLED)의 전기적 특성 연구 (Electrical Characteristics of a Multilayer Organic Light Emitting Diode using a Numerical Modeling)

  • 안승준;안성준;오태식
    • 한국산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.86-94
    • /
    • 2007
  • 본 논문에서는 수치해석적 소자 모델링 기법을 이용하여 다층박막형 OLED(multilayer oraganic light emitting diode)에서의 전기적 특성을 연구하였다. 모델링을 위한 다층박막형 OLED 소자 구조로는 수치해석 결과에 대한 명확한 검증을 위해서 연구문헌들에 널리 적용되어진 ITO/CuPC/${\alpha}-NPD$/Alq3/ LiF/Al 구조를 채택하여 모델링하였다. 금회의 전류-전압 특성에 대한 수치해석 결과는 이전의 참고문헌들에 실험적으로 제시되어 있는 결과들과 일치되어짐을 확인하였다. 본 연구는 다층박막 OLED의 동작 메카니즘에 대한 완벽한 이해와 실제 소자에의 적용 가능성 검토를 목적으로 하였다.

  • PDF

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Performance Analysis of Layered and Blended Organic Light-Emitting Diodes

  • Park, Jong-Woon;Yim, Yeon-Chan;Heo, Gi-Seok;Kim, Tae-Won;Lee, Jong-Ho;Park, Seung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.424-427
    • /
    • 2008
  • We make performance simulations of three different organic light-emitting diodes (OLEDs), one of which is based on a conventional layered structure and the others on a blended structure where an emitting layer (EML) is either uniformly or stepwise mixed with an electron transport layer (ETL), Tris-(8-hydroxyquinoline) aluminum ($Alq_3$).

  • PDF

Realization of improved efficient White-Organic Light Emitting Diodes with a Thin Electron Blocking Layer

  • Park, Jung-Soo;Lee, Joo-Won;Kim, Young-Min;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1294-1296
    • /
    • 2005
  • We have fabricated white organic light emitting diodes. To obtain balanced white emission and improve the efficiency of devices, thin electron blocking layer (TEBL) was inserted between the emitting layers. We showed that the effective injection of electrons through the optimization of TEBL (a - NPD) embodied the balance of spectra and had a possibility of getting white emission. In a device with 0.3 nm a-NPD, it had a maximum power efficiency of 3.80 lm/w at 250 $cd/m^2$, a luminance of 1200 $cd/m^2$ at 100 $mA/cm^2$ , and the CIE coordinates were (0.353, 0.357).

  • PDF

전자수송층이 청색 인광 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Electron Transport Layers on Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes)

  • 서원규;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.323-326
    • /
    • 2009
  • We have developed blue-emitting phosphorescent organic light emitting diodes (OLEDs) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tris (8-quinolinolato)aluminum ($Alq_3$) electron transport layers. As blue dopant and host materials, bis[(4,6-di-fluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) and N,N'-dicarbazolyl-3,5-benzene (mCP) were used, respectively. The driving voltage, current efficiency and emission characteristics of devices were investigated. While the driving voltage was about $1{\sim}2$ V lower in the device with an $Alq_3$ layer, the current efficiency was about 66 % higher in the device with BCP electron transport layer. the blue phosphorescent OLED with BCP layer exhibited higher purity of color, resulting from a relatively weak electroluminescence intensity at 500 nm.

Improved Performance of Organic Light-Emitting Diodes Using Novel Hole-transporting Materials

  • Kim, Young-Kook;Hwang, Seok-Hwan;Kwak, Yoon-Hyun;Lee, Chang-Ho;Yi, Jeoung-In;Lee, Jong-Hyuk;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.758-761
    • /
    • 2009
  • The electroluminescent devices with the phenylnaphthyldiamine HTMs as the hole-transporting layer were more efficient than that with the biphenyldiamine HTM 1. Particularly, the life-time of the device IV using HTM 2 is about two times longer than that of the reference device III with HTM 1 within the measured current density, indicating more effective recombination at the emitting layer of device IV.

  • PDF

발광층 두께가 삼층 구조 청색 인광 OLED의 효율 특성에 미치는 영향 (Effects of Emission Layer Thickness on the Efficiency of Blue Phosphorescent Organic Light Emitting Diodes with Triple Layer Structure)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.143-147
    • /
    • 2010
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses of N,N'-dicarbazolyl-3,5-benzene (mCP) host layers doped with bis[(4,6-di-fluorophenyl)-pyridinate-N,$C^{2'}$]picolmate (FIrpic) guest materials. The thicknesses of mCP:FIrpic layers were 5, 10, and 30 nm. Driving voltage, current and power efficiencies were investigated. The current efficiency was higher in the 10 nm thick mCP:FIrpic device, resulting from the better electron-hole balance. The device with 10 nm mCP:FIrpic layer exhibited the maximum current efficiency of 22.5 cd/A and power efficiency of 7.4 lm/W at a luminance of 1000 cd/$m^2$.