• Title/Summary/Keyword: Organic light emitting devices

Search Result 488, Processing Time 0.027 seconds

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

Fabrication of Polymer Composite with Enhanced Insulation and Mechanical Properties using Aluminum Borate Nanowhiskers (알루미늄 보레이트 나노휘스커를 이용한 향상된 절연성 및 기계적 특성을 가지는 고분자 복합체 제작)

  • Junhyeok Choi;Sangin Lee;Kiho Song;Taekyung Kim;Changui Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer (탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구)

  • Kang, Hak-Su;Park, Dae-Won;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.418-423
    • /
    • 2009
  • MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.

Effect of H2 Addition on the Properties of Transparent Conducting Oxide Films Deposited by Co-sputtering of ITO and AZO (동시 스퍼터링으로 제조한 AZO-ITO 혼합박막의 증착 중 수소 혼입 영향 분석)

  • Kim, Hye-Ri;Kim, Dong-Ho;Lee, Sung-Hun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.267-271
    • /
    • 2009
  • Multicomponent transparent conducting oxide films were deposited on glass substrates at 150 by dual magnetron sputtering of AZO and ITO targets. In the case of mixing a limited amount of ITO (10W), resistivity of TCO films was significantly increased compared to the AZO film; from $3.5{\times}10^{-3}$ to $9.7{\times}10^{-3}{\Omega}{\cdot}cm$. Deterioration of the electrical conductivity is attributed to the decreases in carrier concentration and Hall mobility. Improvement of the conductivity could be obtained for the films prepared with ITO powers larger than 40 W. The lowest resistivity ($\rho$) of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ was achieved when ITO power was 100 W. Effects of $H_2$ incorporation on the electrical and optical properties of AZO-ITO films were investigated in this work. Addition of small amount of hydrogen resulted in the increase of carrier concentration and the improvement of electrical conductivity. It is apparent that the roughness of AZO-ITO films decreases dramatically after the transition of microstructure from polycrystalline to amorphous phase, which gives practical advantages such as an excellent uniformity of surface and a high etching rate. AZO-ITO films grown at sputtering ambient with hydrogen gas are expected to be applicable to optoelectronic devices such as organic light emitting diodes and flexible displays due to their sufficient electrical and structural properties.

Design of Mixed Reality based Convergence Edutainment System using Cloud Service (클라우드 서비스를 이용한 복합현실 기반의 융합형 에듀테인먼트 시스템 설계)

  • Kim, Donghyun;Kim, Minho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2015
  • TOLED(Transparent, Organic Light Emitting Diodes) based edutainment system has been studied to solve the actual feeling training and educational experience problem of e-learning. However, edutainment system using TOLED has a problem for the non-detection of multi marker array and rotate marker array, and it has problem for the dissonance phenomena caused by Illumination Environment between real world and virtual object. It also has a do not provide services through a variety of devices problem. Therefore, in this paper, we designed a system that provides a realistic actual feeling edutainment contents by recognizes the marker array rotation and a plurality of marker arrangement via an improved marker detection technique. And to unify the real space and virtual space of the lighting environment through a nested block layer.

Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System (대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성)

  • Bae, Kang;Wang, Tae-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Hong, Jae-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.