• Title/Summary/Keyword: Organic light emitting device

Search Result 598, Processing Time 0.031 seconds

Review of OLED-based Wearable Display for Smart Textiles (스마트 텍스타일 구현을 위한 OLED 기반 웨어러블 디스플레이 리뷰)

  • Jeong, Eun Gyo;Lee, Chang-Min;Cho, Seok Ho
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.860-868
    • /
    • 2021
  • Clothing has a very important role in human life, and it is the most human-friendly platform because humans wear it in almost all the time. In the recent years, smart clothing integrated with various functions is solidifying its position as the core of next-generation Information and Communications Technology(ICT). With this global trend, the smart textiles, textiles embedded with electronic devices that are capable of performing various functions, have been attracting a lot of attention. Therefore, various research activities on the smart textiles are in progress, and the global market outlook for the smart textiles is also showing rapid growth. Among the various smart textile technologies, the textile/fiber-based wearable display has been attracting more attention because it is an essential element for wearers to intuitively control the functions integrated in the smart textiles. This paper provides insightful information and the technological elements of organic light emitting diodes(OLEDs) display, which have been evaluated as the most ideal device for luminescent clothing. Since, OLEDs have many advantages such as light weight, extremely thin thickness and great flexibility, the textile/fiber-based wearable OLEDs can be worn without any inconvenience. In addition, by introducing previous studies on the textile/fiber-based OLED displays, we intend to consider the commercial potential of the textile/fiber-based smart luminescent clothing using the OLED technologies.

Controlled Charge Carrier Transport and Recombination for Efficient Electrophosphorescent OLED

  • Chin, Byung-Doo;Choi, Yu-Ri;Eo, Yong-Seok;Yu, Jai-Woong;Baek, Heume-Il;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1418-1420
    • /
    • 2008
  • In this paper, the light emitting efficiency, spectrum, and the lifetime of the phosphorescent devices, whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping induced by the emissive dopant, are explained by differences in the energy levels of the host, dopant, and nearby transport layers. On the basis of our finding on device performance and photocurrent measurement data by time-of-flight (TOF), we investigated the effect of the difference of carrier trapping dopant and properties of the host materials on the efficiency roll-off of phosphorescent organic light emitting diode (OLED), along with a physical interpretation and practical design scheme, such as a multiple host system, for improving the efficiency and lifetime of devices.

  • PDF

Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface (LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석)

  • Kim, H.M.;Jang, K.S.;Yi, J.;Sohn, Sun-Young;Park, Kuen-Hee;Jung, Dong-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF

Electroluminescent Characteristics of Green Phosphorescent Organic Light Emitting Devices with the Mixed Host Layer of TCTA:TAZ between TCTA and TAZ (TCTA-TAZ 사이 TCTA:TAZ 혼합호스트 층을 갖는 녹색 인광소자의 전계발광 특성)

  • Jang, J.G.;Shin, S.B.;Shin, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.427-428
    • /
    • 2008
  • New high efficiency green light emitting phosphorescent devices with emission layers of [TCTA/TCTA:TAZ/TAZ]:Ir$(ppy)_3$ have been fabricated and evaluated in this paper. Among the devices having different thicknesses of TCTA:TAZ mixed layer in the total 300$\AA$-thick host of TCTA(80$\AA$)/TCTA:TAZ (50~100$\AA$)/TAZ, the device with host of TCTA(80$\AA$)/TCTA:TAZ(90$\AA$)/TAZ(130$\AA$) showed the best electroluminescent characteristics with the current density of 95 mA/$cm^2$ and luminance of 25,000 cd/$m^2$ at an applied voltage of 10V. The maximum current efficiency was 52 cd/A under the luminance of 400 cd/$m^2$.

  • PDF

In situ photoemission and inverse photoemission studies on the interfacial electronic structures of organic materials (In situ 광전자분광/역광전자분광 분석을 이용한 유기물 계면의 전자구조 연구)

  • Yi, Yeonjin
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.4-11
    • /
    • 2015
  • During last two decades, remarkable progresses have been made in organic electronic devices, such as organic light-emitting device, organic photovoltaic and many other applied devices. Many of these progress are attributed to the multilayered/heterojunction device architectures, which could be achieved from the control of "interfacial energetics". In that sense, the interfacial electronic structures in organic electronic devices have a decisive role in device performance. However, the prediction of the interfacial electronic structures from each separate material is not trivial. Many complex phenomena occur at the interface and these can be only understood from thorough measurements on interfacial electronic structures in situ. Photoemission and inverse photoemission spectroscopy have been known as the most proper measurement tools to analyze these interfacial electronic structures. In this review, the basic principles of (inverse) photoemission spectroscopy and typical measurement results on organic/inorganic interfaces are introduced.

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

Tetra-Chromatic White Phosphorescent Organic Light-emitting Diodes with an External Color Tuning Layer

  • Chang, Chi-Sheng;Liu, Po-Tsun;Ho, Meng-Huan;Chen, Chin-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.477-480
    • /
    • 2008
  • A highly efficient white phosphorescent OLED with a "tetra-chromatic" emission was fabricated by using an external color tuning layer (ECTL) which is composed of a layer of greenish yellow organic dye dispersed in PMMA on the outside of the glass. The ECTL combining with a lower red dopant concentration in the device has been found to improve the efficiency of a conventional WOLED by more than 27%.

  • PDF

Improvement of stability for organic light emitting devices by thermal and electrical treatment

  • Jung, Jae-Hoon;Lee, Sung-Soo;Choi, Ji-hye;Choi, Joon-Hoo;Chung, Kyu-ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.998-1001
    • /
    • 2006
  • Highly stable organic electroluminescent devices have been achieved by treatment of thermal and electrical annealing. We investigate here the performance of theses devices at temperatures and pulse aging. We also demonstrate improved device stability due to thermal and electrical treatment, and the brightness decays at no treatment, thermal only, electrical only and thermal/electrical treatment were 86.6%, 89.5%, 93.0%, and 96.7%, respectively, in the after 150 h of operation driven with an initial luminance of $1,000\;cd/m^2$.

  • PDF