• Title/Summary/Keyword: Organic hazardous air pollutants

Search Result 42, Processing Time 0.022 seconds

Indoor Air Quality of Laboratories in K- University and the Management Strategy (K대학교 실험실의 실내공기질 실태 및 관리방안)

  • Lee, Dong-Hyun;Jeong, Hyo-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.323-330
    • /
    • 2012
  • The purpose of this study was to examine the occurrence level of harmful chemical substance and the riskiness caused by it at university laboratory, which had been faintly interested in safe health management. It measured and analyzed indoor pollutants by academic department targeting K university where is located in Seoul Metropolis for 6 days starting from May 26, 2010. As a result, the appearance of being furnished with MSDS, the appearance of installing the exposure-reduction facilities, and the present status of supplying protective equipment in order to grasp the present status of managing harmful chemical substance at university laboratory were relatively good in management at the Dept. of Chemistry, the Dept. of Physics, and the Dept. of Medical Science, which are basic science laboratories. The activity for managing harmful chemical substance in the Dept. of Dental Medicine and the Dept. of Fine Arts was surveyed to be insufficient. Also, the concentration of formaldehyde and TVOCs(total volatile organic compounds) inside laboratory was detected noticeably highly in the Dept. of Fine Arts compared to other laboratories. The concentration of formaldehyde in a group, which was collectivized by similar academic department, was indicated to be higher in other academic departments including the Dept. of Fine Arts and the Dept. of Life Science, thereby having shown significant difference. The concentration of formaldehyde and TVOCs showed significant difference at the laboratory without installation compared to the laboratory with installation of fume hood. Seeing the above results, it could be known that a whole drop in recognition on influence of chemical upon health leads to being able to increase occurrence level of hazardous factor due to being insufficient in activity of protecting exposure to chemical substance.

Exposure to PAHs and VOCs in Residents near the Shinpyeong·Jangrim Industrial Complex (신평·장림 산단 인근 주민의 PAHs 및 VOCs 노출)

  • Yoon, Mi-Ra;Jo, HyeJeong;Kim, GeunBae;Chang, JunYoung;Lee, Chul-Woo;Lee, Bo-Eun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.131-143
    • /
    • 2021
  • Objectives: This study aims to investigate the atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) and the urinary concentration of biomarkers in residents near the Shinpyeong·Jangrim Industrial Complex to compare them with those of residents in a control area. Methods: Hazardous air pollutants (PAHs and VOCs) were measured in an exposure area (two sites) and a control area (one site). Urine samples were collected from residents near the industrial complex (184 persons) and residents in the control area (181 persons). Multiple linear regression analysis was used to identify which factors affected the concentration of PAHs and VOCs metabolites. Results: The average atmospheric concentration of PAHs in Shinpyeong-dong and Jangrim-dong was 0.45 and 0.59 ppb for pyrene, 0.15 and 0.16 ppb for benzo[a]pyrene, and 0.29 and 0.35 ppb for dibenz[a,h]anthracene. The average atmospheric concentration of VOCs was 1.10 and 0.99 ppb for benzene, 8.22 and 11.30 ppb for toluene, and 1.91 and 3.05 ppb for ethylbenzene, respectively. The concentrations of PAHs and VOCs in residents near the Shinpyeong·Jangrim Industrial Complex were higher than those of residents in the control area. Geometric means of urinary 2-hydroxyfluorene, 1-hydroxypyrene, methylhippuric acid, and mandelic acid concentrations were 0.45, 0.22, 391.51, and 201.36 ㎍/g creatinine, respectively. Those levels were all significantly higher than those in the control area (p<0.05). In addition, as a result of multiple regression analysis, even after adjusting for potential confounding factors such as gender and smoking, the concentration of metabolites in urine was high in residents near the Shinpyeong·Jangrim Industrial Complex. Conclusion: The results of this study show the possibility of human exposure to VOCs in residents near the Shinpyeong·Jangrim Industrial Complex. Therefore, continuous monitoring of the local community is required for the management of environmental pollutant emissions.