• 제목/요약/키워드: Organic field-effect transistors

검색결과 187건 처리시간 0.029초

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • 유태희;김정혁;상병인;최원국;황도경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

용제에 따른 TIPS(triisopropylsilyl) Pentacene을 이용한 유기박막 트렌지스터의 전기적 특성에 관한 연구 (Investigation of Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl(TIPS) Pentacene Organic Thin-film Transistors)

  • 김경석;김영훈;한정인;최광남;곽성관;김동식;정관수
    • 한국진공학회지
    • /
    • 제17권5호
    • /
    • pp.435-441
    • /
    • 2008
  • 본 논문은 TIPS Pentacene을 유기반도체로 사용한 유기박막 트랜지스터의 용제에 따른 전기적 특성에 대한 연구로서, 용제로는 chlorobenzene, p-xylene, chloroform, toluene을 사용하였으며, 회전 도포 방법을 사용하여 TIPS pentacene을 혼합하여 적층하였다. chlorobenzene을 사용하여 만들어진 유기박막 트랜지스터는 $1.0{\times}10^{-2}cm^2/V{\cdot}s$의 전계효과 이동도, $4.3{\times}10^3$의 on/off 비율, 5.5 V의 문턱전압의 특성을 보였다. 반대로, chloroform을 사용하여 만들어진 유기박막 트랜지스터는 $5.8{\times}10^{-7}cm^2/V{\cdot}s$의 전계효과 이동도, $1.1{\times}10^2$의 on/off 비율, 1.7 V의 문턱전압의 특성을 보였다. 또한 각 용제에 따른 TIPS pentacene 결정크기를 AFM을 통하여 측정하였다. 이와 같은 결과들을 통하여, 더 높은 끊는점을 가진 용제는 TIPS Pentacene의 더 큰 결정 크기와 높은 결정화 성향으로 인하여 더 좋은 전기적 특성을 가지는 것을 확인할 수 있었으며, 본 실험에서는 끓는점이 가장 높은 chlorobenzene을 사용한 TIPS Pentacene 유기박막 트랜지스터가 가장 좋은 전기적 특성을 나타내는 것을 확인하였다.

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

A Flexible Amorphous $Bi_5Nb_3O_{15}$ Film for the Gate Insulator of the Low-Voltage Operating Pentacene Thin-Film Transistor Fabricated at Room Temperature

  • Kim, Jin-Seong;Cho, Kyung-Hoon;Seong, Tae-Geun;Choi, Joo-Young;Nahm, Sahn
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.17-17
    • /
    • 2010
  • The amorphous $Bi_5Nb_3O_{15}$ film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-$O_2$ film) has a hydrophobic surface with a surface energy of $35.6\;mJm^{-2}$, which is close to that of the orthorhombic pentacene ($38\;mJm^{-2}$, resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of $145\;nFcm^{-2}$ during and after 10s bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the polyethersulphone substrate at room temperature using a BNRT-$O_2$ film as a gate insulator exhibited a promising device performance with a high field effect mobility of $0.5\;cm^2V^{-1}s^{-1}$, an on/off current modulation of $10^5$ and a small subthreshold slope of $0.2\;Vdecade^{-1}$ under a low operating voltage of -5 V. This device also maintained a high carrier mobility of $0.45\;cm^2V^{-1}s^{-1}$ during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-$O_2$ film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  • PDF

비정질 IZTO기반의 투명 박막 트렌지스터 특성 (Characteristics of amorphous IZTO-based transparent thin film transistors)

  • 신한재;이근영;한동철;이도경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Property Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Kim, Seok Hwan;Lee, Jouhahn;Yun, Hyung Joong;Park, Soo Jeong;An, Ki-Seok;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.362-362
    • /
    • 2014
  • Atomic layer deposition (ALD) can be regarded as a special variation of the chemical vapor deposition method for reducing film thickness. ALD is based on sequential self-limiting reactions from the gas phase to produce thin films and over-layers in the nanometer scale with perfect conformality and process controllability. These characteristics make ALD an important film deposition technique for nanoelectronics. Tantalum pentoxide ($Ta_2O_5$) has a number of applications in optics and electronics due to its superior properties, such as thermal and chemical stability, high refractive index (>2.0), low absorption in near-UV to IR regions, and high-k. In particular, the dielectric constant of amorphous $Ta_2O_5$ is typically close to 25. Accordingly, $Ta_2O_5$ has been extensively studied in various electronics such as metal oxide semiconductor field-effect transistors (FET), organic FET, dynamic random access memories (RAM), resistance RAM, etc. In this experiment, the variations of chemical and interfacial state during the growth of $Ta_2O_5$ films on the Si substrate by ALD was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor $Ta(N^tBu)(dmamp)_2$ Me was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicide was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset value between $Ta_2O_5$ and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF