• Title/Summary/Keyword: Organic amendments

Search Result 98, Processing Time 0.032 seconds

A Study on the Adsorption of Organophosphorus Pesticides Applying Sewage Sludge to Soil Amendment (하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착 능력에 관한 연구)

  • 임은진;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.95-103
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on the leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73∼84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Nondestructive determination of humic acid in compost by NIRS

  • Seo, Sang-Hyun;Han, Xiao-Ri;Cho, Rae-Kwang;Park, Woo-Churl
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1623-1623
    • /
    • 2001
  • Composting is a biological method used to transform the organic waste into stable, humified organic amendments. Humification is indicated as the key factor in improving the quality of compost, because of the importance of humic substances to soil ecology, fertility and structure, and their beneficial effects on plant growth The compost constituents vary widely, however, the degree of maturity is very important factor in compost quality. So this experiment carried out to determine the rapid estimation of the quality in cattle, pig, chicken and waste composts using near infrared reflectance spectroscopy(NIRS). Near infrared reflectance spectra of composts was obtained by Infra Alyzer 500 scanning spectrophotometer at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid contents in composts. The results summarized that NIR spectroscopy can be used as a routine testing method to determine quantitatively the humic acid content in the compost samples ondestructively. Especially, we supposed that absorbance around 2300nm is related to humic acid as a factor of compost maturity. However the NIR absorption approach is empirical, it actually requires many combinations of samples and data manipulations to obtain optimal prediction.

  • PDF

An Analysis of the Impact of US Beef Import Tariff Rate Changes on the Korean Beef Cattle Market (미국산 쇠고기 수입관세율 변화가 한육우 시장에 미치는 영향분석)

  • Kim, Da-Hae;Kim, In-Seck
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.1
    • /
    • pp.31-57
    • /
    • 2020
  • Korea-US FTA amendment became effective January 1, 2019 through several trade negotiations between the two countries. These amendments did not include changes in the agricultural sector. However, given the policy direction of the Trump administration, it is difficult to be certain that the existing Korea-US FTA on the agricultural sector will remain unchanged. This study examines the potential impact of changes in the US beef import tariff rates under the Korea-US FTA, which is progressively eliminated until 2026 using a dynamic partial equilibrium model. The modelling system is simulated with 100% decreases of tariff rates over 2020~2026 period and then compared to the baseline which is developed based on the current Korea-US FTA tariff rates. According to the scenario analyses results, 100% decreases of US beef tariff rate lowered Korean beef cattle production value up to 4.23%. Looking at this change in terms of absolute value rather than percentage, the total production value over 2020~2026 is expected to decrease by 815 billion won compared to Baseline. This reduction in production value in dynamic analysis is 67 billion won higher than the comparative static analysis.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Determining Optimum Condition of Acid Hydrolysis Technique for Food Waste Reduction

  • Kim, Eui Yeong;Choi, Young Gwang;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.606-614
    • /
    • 2017
  • Amount of food waste has been increased annually in Korea and re-use of food waste as a fertilizer or soil amendment in agricultural field has been studied. Therefore, main purpose of this research was to determine optimum condition of hydrolysis for food waste management. Three different solvents, HCl, $H_2SO_4$, and KOH, were used and varied concentration at the range of 10~30% and hydrolysis time at the range of 1~3 hours were evaluated. In general, reduction rate of food waste was increased when concentration of solvent and hydrolysis time was increased except when KOH was used. Among different solvents, concentration, and hydrolysis time, the highest reduction rate (97.79%) was observed when 30% of HCl was used with temperature of $140^{\circ}C$ at 2 hours of hydrolysis time. In addition, neutralization effect of alkalic materials, shell waste (SW) and egg shell (ES) was evaluated. Both SW and ES increased pH of finished acid hydrolysis solution up to 7.61 indicating that neutralization effect of SW and ES was sufficient for finished acid hydrolysis solution. Contents of organic matter was also at the range of 10.7~13.04% and 5.53~8.04% respectively when HCl and $H_2SO_4$ were used as solvent. Overall, hydrolysis technique can be used to manage food waste with selected optimum condition in this study and characteristics of finished hydrolysis solution after neutralization might be suitable for soil amendments.

Effect of Commercial Organic :Medium Amended with Vermicast on the Growth of Rice Seedlings(Oryza sativa L.) -Amended with Vermicast of Oyster Mushroom Waste- (지렁이 분립을 첨가한 유기상토가 벼의 유식물체 생육에 미치는 영향 -느타리버섯 폐배지로 생산한 분립의 첨가-)

  • Lee, Ju-Sam;Kim, In-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • In this paper, we assessed the growth of rice seedlings(Chucheong variety) in commercial organic growth medium that was substituted with different ratios of vermicast of oyster mushroom waste grown under potting alone, and potting and floor layering treatment. The commercial organic growth medium was substituted with vermicast at ratios of control, 2%, 4% and 6%, respectively. The control consisted of commercial organic growth medium alone without vermicast. Incorporation of $4%{\sim}6%$ vermicast of oyster mushroom waste into a commercial organic growth medium enhanced the growth of rice seedlings significantly as compared to commercial organic growth medium alone(control), and 2% amended with vermicast in potting treatment. This results demonstrate that substitution with low ratios of vermicast($4%{\sim}6%$) will promote growth of rice seedlings. The growth of rice seedlings in commercial organic growth medium alone without vermicast was enhanced significantly as compared to the substituted with vermicast in floor layering treatment, it may due to nutrient uptake by elongated root from the vermicast when applied to on the floor layering. Floor layering treatment is an effective method for potting processing of vermicast. The vermicast of oyster mushroom waste should have a high safety and great potential as materials of growth media for increasing plant growth, either as soil conditioner, or as substitution or amendments to commercial organic growth medium. For the enhanced growth of rice seedlings, demand to increase with total nitrogen, and decrease with the carbon and nitrogen ratio(C/N) of commercial organic growth medium supplied by such as vermicast.

  • PDF

Effect of Four Soil Amendments on Turfgrass Establishment and Density in Creeping Bentgrass Grown in Sand-based Root Zone (4종류 토양개량재가 USGA 모래에 파종한 크리핑 벤트그래스의 유묘 활착률 및 밀도 변화에 미치는 영향)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.148-157
    • /
    • 2018
  • Research was initiated to evaluate four domestic and overseas organic soil amendments (SAs) on turfgrass groundcover and density and to provide basic information on practical sports turf establishment. This study was conducted in Agrostis palustris Huds. (CB) grown in sand-based root zone. A total of 20 treatments of SA+sand were prepared by mixing 10 to 50% (v/v). These amendments were SABP (Berger Peat), SAEP (Eco-Peat), SAGS (G1-Soil), and SAPP (Premier Peat). Turfgrass groundcover and density significantly varied with SAs, its mixing rate to sand and week after seeding (WAS). Cumulative turfgrass density was variable, but a great change occurred between 2 and 4 WAS. Turfgrass density at 2 WAS ranged from 36.7 (SABP 30) to 89.7% (SAGS 20), being 53.0% in differences among treatments. However, CB reached to carrying capacity around 6 WAS. Thus, most treatments were similar to 90% or so in density. At the end of study, overall groundcover ranged between 60.7 (SAEP 10) and 96.7% (SAPP 50). Proper mixing rate was variable with SAs, being 10 and 20% for SABP and SAGS, respectively. But the optimum rate was 50% for both SAEP and SAPP.

Effect of Soil Amendments on Rice Yield and on Occurence of Harmful Substance in Ill Drained Paddy Soil (습답(濕畓)에서 개량제(改良劑) 시용(施用)이 벼 수량(收量) 유해물질(有害物質) 생성(生成)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Yoon, Suk-Kwon;Ryu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 1985
  • In order to investigate the application effects of soil amendment on wetland rice soil field and laboratory experiment were conducted on ill drained paddy field on which rice straw, Compost, Lime and Silicate materlials such as wallostonite and fused phosphate were applied. 1. As compared with check plot, rice yield was increased by application of soil amendments significantly in all plots but rice straw one. 2. The effects of soil amendment on rice production were in the order of fused phosphate and N.K, addition > silicate material and N.K, addition=Compost > rice straw and lime plot. 3. The significant correlation was showed among the rice yield and the numbers of panicle and grain. 4. The application of the rice straw restrained the rice growth because of nitrogen defficiency in early stage but increased rice yield due to the number of panicle due to supplying nitrogens late stage. 5. The application of rice straw in wetland soil promoted to occur organic acids such as $PCO_2$ and $HCO_3$, and decreased tillering due to these organic acids occuring in early growth stage.

  • PDF

Seasonal Dynamics of Enzymetic Activities and Functional Diversity in Soils under Different Organic Managements (시용 유기물을 달리한 토양에서 미생물 군락의 효소활성과 기능적 다양성의 계절적 변화)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.307-316
    • /
    • 2009
  • Soil microbial activity and diversity are affected by organic sources applied to improve soil quality and fluctuate seasonally. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community-level physiological profiling (CLPP) in a Mexico silt loam in North Central Missouri, USA. Temporal patterns of these parameters were observed by periodic five soil sampling from spring to fall over a two year period. MC increased soil dehydrogenase (DH) activity consistently beginning about three months after MC application; fluorescein diacetate (FDA) hydrolytic activity significantly began to increase by the September of the first year but fluctuated during the following period. DH activity responded more directly to the amount or properties of organic residues in soils while FDA hydrolysis and CLPP were generally influenced by composition of organic sources, and enzyme activities and CLPP showed seasonal variation, which depended on organic sources and soil moisture. MC and cover crops may be useful organic sources for enhancing general soil microbial activity and altering soil microbial diversity, respectively. Because microbial activities and diversity are dynamic and subject to seasonal changes, the effects of organic amendments on these parameters should be investigated frequently during a growing season.