• Title/Summary/Keyword: Organic amendments

Search Result 98, Processing Time 0.02 seconds

Effect of Organic Amendments on Efficacy of Biological Control of Seedling Damping-off of Cucumber with Several Microbial Products (유기물 첨가가 오이 모잘록병에 대한 미생물 제제의 생물학적 방제 효과 증진에 미치는 영향)

  • Lee, Jong-Moon;Do, Eun-Soo;Baik, Su-Bong;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Several microbial biocontrol products (Greenbiotech Co., Paju, Korea), Green-all T (Trichoderma harzianum), Green-all S(Bacillus sp.) and Green-all G (Streptomyces sp.) were supplemented with organic amendments such as sawdusts and rice hulls to study on efficacy of biological control of seeding damping-off of cucumber caused by Pythium ultimum. Sawdusts amended into potato dextrose agar alone could inhibit in vitro mycelial growth of P. ultimum. All there microbial products of Green-all T, Green-all G and Green-all S significantly reduced seeding damping-off (LSD, P=0.05). However, several amendments such as sawdusts and rice hulls into Green-all T and Green-all S products did not increase efficacy of biological control compared to non-amended treatment. In contrast, supplements of aminodoctor containing several amino acids (Greenbiotech Co., Korea) into Green-all G product significantly increased efficacy of biological control of seeding damping-off, resulting in from 42% to 2% disease incidence in relation to seedling emergence (LSD, P=0.05). Also, amendment of sawdusts into Tricoderma product significantly increased efficacy of biological control as disease index of 5.0 compared to non-amended control of 56.0 in Green-all T product alone. This indicates that organic amendments could increase efficacy of biological control of cucumber seedling damping-off.

하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착능력에 관한 연구

  • 임은진;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.125-130
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil : sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on tile leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73~84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

  • PDF

Effects of Composts and Soil Amendments on Physicochemical Properties of Soils in Relation to Phytophthora Root and Crown Rot of Bell Pepper

  • Kim, Ki-Deok;Nemec, Stan;Musson, George
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.283-285
    • /
    • 2000
  • Two field tests were conducted in 1995 to examine the effects of composts and soil amendments on physicochemical properties of soil in relation to Phytophthora root and crown rot of bell pepper. Chitosan, crab shell waste, humate, sewage sludge-yard trimmings, and wood chips were applied to test plots, some of which affected the levels of P, K, Mg, pH, and H. Physicochemical properties were not related with disease incidence, but percent organic matter, estimated nitrogen release, K, and Mg were correlated with total microbial activity. The elements K and Mg were especially responsible for the increased soil microbial activity that could affect development of root and crown rot of pepper.

  • PDF

Reducing Soil Loss of Sloped Land using Lime-Organic Compost mixtures under Rainfall Simulation (인공강우 모사를 통한 석회/유기퇴비 혼합물의 경사지 토양유실 억제효과)

  • Koh, Il-Ha;Roh, Hoon;Hwang, Wonjae;Seo, Hyunggi;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.43-50
    • /
    • 2018
  • In a previous study, the feasibility of four materials (bentonite, steelmaking slag, lime and organic compost) to induce soil aggregate formation was assessed and the mixtures of organic compost and lime were chosen as most effective amendments in terms of cost benefit. This work is a subsequent study to evaluate the effectiveness of those amendments in reducing soil loss in $15^{\circ}$ sloped agricultural area by using rainfall simulation test. Three different soils were treated with two conditions of organic compost/lime mixtures (2% + 2%, 3% + 1%, w/w). In the amended soils, soil fertility was increased due to the increase of CEC, T-N, and T-P. During the rainfall simulation, suspended solid in run-off water from amended soil were reduced by 43% ~ 78%. When the content of organic compost was higher than that of lime, reduction of soil loss was also increased by 67% ~ 78%. Sediment discharge was also decreased by 72% ~ 96% in the amended soil. Similar to the suspended solid analysis, higher organic compost content led to more reduction of soil discharging, which implies organic compost is more effective than lime in reducing soil loss. The overall result suggests that the mixtures of organic compost and lime could be used as amendment materials to reduce soil loss in sloped farmland.

Impact of Amendments on Microbial Biomass, Enzyme Activity and Bacterial Diversity of Soils in Long-term Rice Field Experiment (개량제 장기 연용이 논토양의 미생물체량, 효소활성 및 세균 다양성에 미치는 영향)

  • Suh, J.S.;Noh, H.J.;Kwon, J.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • The long-term effects of soil management history on microbial communities are still poorly understood. Our objectives were to determine the impact of long-term application of soil amendments on microbial communities in rice paddy fields. The treatments selected were control where crops were grown without any nutrient application (CON); nitrogen-phosphorus-potassium (NPK); NPK plus compost (CNPK); NPK plus lime (LNPK); and NPK plus silicate (WNPK). The long-term addition of organic and inorganic amendments significantly changed soil chemical properties. The amount of organic carbon increased in the treatments with fertilizer and amendments over that in the soil without inputs. However, we could not observe the differences of bacterial population among the treatments, but the number of aerobic bacteria increased by the addition of amendments. Isolates from the rice paddy soils before irrigation were Dactylosporangium, Ewingella, Geobacillus, Kocuria, Kurthia, Kytococcus, Lechevalieria, Micrococcus, Micromonospora, Paenibacillus, Pedobacter, Pseudomonas, Pseudoxanthomonas, Rhodococcus, Rothia, Sphingopyxis, Stenotrophomonas, and Variovorax. Dominant genera were Arthrobacter, Kocuria, Kurthia, and Bacillus in the long-term field. Microbial biomass was the highest in the compost treatment (CNPK), and was the lowest in the CON. Dehydrogenase activity in soils treated with rice compost straw was the highest and the activity showed an increasing trend according to treatment as follows: CON < WNPK < NPK = LNPK < CNPK. These results demonstrate that soil management practice, such as optimal application of fertilizer and amendment, that result in accumulations of organic carbon may increase microbial biomass and dehydrogenase activity in long-term rice paddy soils.

Potential Nitrogen Mineralization and Availability in Upland Soil Amended with Various Organic Materials

  • Im, Jong-Uk;Kim, Song-Yeob;Jeon, Seong-Hwa;Kim, Jang-Hwan;Yoon, Young-Eun;Kim, Sook-Jin;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • In this study, we evaluated the nitrogen (N) mineralization potential and Nitrogen use efficiency (NUE) of oil-cake, compost, hairy vetch and barley, which are the most widely used organic amendments in South Korea. The N mineralization potential (No) for organic fertilizers treated soil was highest for the hairy vetch treatment with a value of $18.9mg\;N\;100\;g^{-1}$, followed by oil-cake, barley and compost. The amount of pure N mineralization potentials in hairy vetch, oil-cake, barley and compost treatments were 8.42, 7.62, 3.82 and $3.60mg\;N\;100\;g^{-1}$, respectively. The half-life ($t_{1/2}$) of organic N in soil amended with oil-cake fertilizer mineralized quickly in 17 days. While, $t_{1/2}$ values of organic N for the compost and barley treatments accounted to 44.4 and 44.1 days, respectively. Oil-cake was good in supplying nutrients to plants. Compost and barley inhibited plant growth in the beginning growth stage and this is attributed to N immobilization effect. The results of this study highlight that compost and barley could be used as potential slow release fertilizers in conventional agriculture.

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

Fractionation and Availability of Cu and Zn in Paddy Soils Following a Long-Term Applications of Soil Amendments (토양개량제를 장기연용한 논토양에서 구리와 아연의 분획화 및 유효도)

  • Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il;Yeon, Beong-Yeal;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • We investigated the effects of a long term application of soil amendments such as lime, silicate, compost, or combinations of these materials on the contents of Cu and Zn in paddy soil and brown rice. The results obtained from a sequential extraction of Cu and Zn in paddy soils and brown rice, using $H_2O$, $KNO_3$, $Na_2$-EDTA and $HNO_3$ and showed that the most of Cu and Zn were NaOH-extractable (organically bound form) and $HNO_3$-extractable (sulfide and residual form). Cu contents of NaOH and EDTA extractable increased with the long term application of compost while the contents of Zn extracted by $KNO_3$ was decreased even though $HNO_3$ extractable-Zn was prominent chemical form in paddy soils. The percentage and contents of Zn, extracted by $KNO_3$ for each combination treatment of soil amendments, was decreased but the contents of Cu was not affected. The content of NaOH extractable-Cu was proportionally increased with increase in organic matter content irrespective of the extractants used in this experiment. The contents of Zn and exchangeable K were also increased with increase in organic matter content. However, we could not find any relationship between the extractable forms of Cu and Zn, and CEC, OM. while increase in CEC, contents of cations, and organic matter decreased the content of Cu in brown rice.

  • PDF

Effects of Chemical Amendments on Phosphorus and Total Volatile Fatty Acids in Hanwoo Slurry (한우액상분뇨에 화학제재를 첨가 시 인과 총 휘발성지방산 함량에 미치는 영향)

  • Choi, In-Hag;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.819-824
    • /
    • 2009
  • The objectives of this study were to evaluate the effects of chemical additives on total phosphorus (TP), soluble reactive phosphorus (SRP), and total volatile fatty acids (total VFAs) in hanwoo slurry. The treatments in this study were ferrous sulfate, alum, and aluminum chloride, and applied at the rate of 0, 0.5, and 1.0 g/25 g of hanwoo slurry. All of the chemical treatments significantly lowered TP (11 to 53% of the untreated control), SRP (41 to 99.9% of the untreated control), and total VFAs (22 to 48.5% of the untreated control) by reducing hanwoo slurry pH (3.42 to 6.86). Among these chemical amendments, addition of 0.5 g ferrous sulfate, alum, and aluminum chloride to hanwoo slurry were the best results evaluated on farms with respect to reducing negative environmental impacts. In conclusion, the results of this study indicate that the use of chemical amendments should be considered in the development of best management practices (BMPs) for the hanwoo industries.

Improvement of asymbiotic seed germination and seedling development of Cypripedium macranthos Sw. with organic additives

  • Huh, Yoon Sun;Lee, Joung Kwan;Nam, Sang Young;Paek, Kee Yoeup;Suh, Gang Uk
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.138-145
    • /
    • 2016
  • To find the optimal propagation condition for endangered Cypripedium macranthos Sw., also known as lady's slipper orchid, the effect of various organic additives on in vitro germination, protocorm formation and seedling growth was investigated during asymbiotic seed culture. When $100ml{\cdot}L^{-1}$ coconut water was added to the basal medium, the highest germination rate and protocorm formation rate were achieved, with 70.8% and 74.2% respectively. Supplementation of phloem sap from birch tree or maple tree also showed a facilitating effect to improve the germination and protocorm development. With $100ml{\cdot}L^{-1}$ birch sap or maple sap, both the germination and protocorm formation rates were roughly more than 65% and 68%. The roots and buds of the seedlings grew vigorously in the medium containing $100ml{\cdot}L^{-1}$ coconut water or phloem sap, in particular, their bud formation rates increased by more than 70%. Addition of banana powder and peptone could not create a more significantly favorable culture condition, and non-addition had the worst results. Our results demonstrated that proper organic amendments such as coconut water and phloem sap might be preferred to in vitro germination and the growth of seedlings developed from the protocorm of C. macranthos Sw. during asymbiotic seed culture.