• 제목/요약/키워드: Organic amendments

검색결과 98건 처리시간 0.022초

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Influence of Continuous Organic Amendments on Growth and Productivity of Red Pepper and Soil Properties

  • Seo, Young-Ho;Kim, Se-Won;Choi, Seung-Chul;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.98-102
    • /
    • 2012
  • Organic farming has rapidly increased in Gangwon province, but there is a concern about nutrient accumulation and nutrient imbalance in the soil of organic farming. This study was conducted to investigate the impact of continuous application of organic amendments on growth and yield of red pepper and soil characteristics compared with chemical fertilizers application for four years. Treatments of organic amendments including oil cake, rice straw compost, amino acid compost, rice bran compost, and mushroom media (spent substrate) compost resulted in comparable growth and yield of pepper to chemical fertilizers. Organic amendments improved soil physical and chemical characteristics. Especially, rice bran compost and oil cake significantly increased soil organic matter compared with chemical fertilizer application and mushroom media compost and rice straw compost significantly improved soil aggregate stability. On the other hand, available phosphate level in the soil amended with rice bran compost or mushroom media compost was relatively high compared with the other treatments due to relatively high phosphate levels in the composts. It is not easy to adjust nutrient composition in the organic materials. Therefore, the results obtained from the study imply that nutrient imbalance needs to be carefully considered in organic farming without use of chemical fertilizers.

Comparison of Heavy Metal(loid)s Contamination of Soil between Conventional and Organic Fruit Farms

  • Lee, Hyun Ho;Kim, Keun Ki;Lee, Yong Bok;Kwak, Youn Sig;Ko, Byong Gu;Lee, Sang Beom;Shim, Chang Ki;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.401-408
    • /
    • 2017
  • Organic amendments such as animal waste compost, lime-bordeaux mixture, and lime sulphur mixture contain heavy metal(loid)s which are toxic to human being, animal, and plant. The objective of this study was to compare heavy metal(loid)s contamination of soil between conventional and organic farm. Soil samples were collected from 10 conventional and 38 organic fruit farms. At each sampling point, top (0~15 cm) and sub soil (15~30 cm) were taken using hand auger. Total concentration for arsenic (As), cadmium (Cd), copper (Cu), nikel (Ni), lead (Pb), and zinc (Zn) in the collected soil were measured. The pollution index (PI) for heavy metal in organic farms indicated it was unpolluted area. However, mean value of PI for organic farms (0.143) was higher than that for conventional farms (0.122). High Geoaccumulation index (Igeo) for Cu, Pb, and Zn implied that grape farms were more polluted than others fruit farms because a lot of lime-bordeaux mixture and lime sulphur were applied in organic grape farms. Especially, top soils showed higher level of contamination than sub soil. Based on the above results, organic amendments might cause accumulation of heavy metals in soil. Therefore, particular attention should be paid for concentration of Cu, Pb, and Zn, when organic amendments are used in the organic fruit farms.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Effect of Organic Soil Amendments on Establishment Vigor, Seedling Emergence, and Top Growth in Kentucky Bluegrass

  • Kim, Kyoung-Nam
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.133-141
    • /
    • 2014
  • Due to limited supplies and expensive importing costs, it is a goal to replace overseas peat with local soil amendments in turf industry of Korea. The study was initiated to compare the performances of five domestic and imported organic soil amendments (OSAs) on establishment characteristics and to provide basic information for root zone composition on sports turf design and construction. The study was conducted in Kentucky bluegrass (Poa pratensis L., KB) under greenhouse conditions from March to June in 2008. A total of 25 treatments of OSA + sand were prepared. These amendments were Berger Peat (OMA), Eco-Peat (OMB), G1-Soil (OMC), Premier Peat (OMD), and Supersoil I (OME). Significant differences were observed in establishment vigor, seedling emergence, and top growth. Results varied depending upon the type of OSAs and their rates in rootzone mixtures. OMA reached over 70% in establishment vigor in 5 WAS (weeks after seeding). OMC produced a maximum vigor of approximately 60% in 6 WAS. The OME amendment, however, showed poor performance lower than 30% in establishing KB turf until 8 WAS. There were considerable variations of top growth, being 3.8 to 14.5 cm. Greater differences in top growth resulted from OME mixtures. Shoot growth orientation in KB is also influenced by OSAs. In general, optimum mixing rate was considered as 10 to 20% for establishment vigor and 20 to 40% for top growth. Considering overall responses to establishment vigor, seedling emergence, and shoot growth, both local OMC and overseas OMD are considered as the useful soil amendments applicable for sports turfs. Domestic OME amendment would be applied for a low maintenance turfs such as rough and utility areas due to greater shoot growth. Information on these amendments would be of practical use for sports turf design and construction. Repeated experiments and field performance test are required to evaluate these OSA effect on other major turfgrass species and also to determine local OSA as imported peat substitute.

여러 안정화제가 산성 및 알칼리 토양에서 중금속 안정화에 미치는 영향 (Effects of Various Amendments on Heavy Metal Stabilization in Acid and Alkali Soils)

  • 김민석;민현기;김정규;구남인;박정식;박관인
    • 한국환경농학회지
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2014
  • BACKGROUND: Recent studies using many amendments for heavy metal stabilization in soil were conducted in order to find out new materials. But, the studies accounting for the use of appropriate amendments considering soil pH remain incomplete. The aim of this study was to investigate the effects of initial soil pH on the efficiency of various amendments. METHODS AND RESULTS: Acid soil and alkali soil contaminated with heavy metals were collected from the agricultural soils affected by the abandoned mine sites nearby. Three different types of amendments were selected with hypothesis being different in stabilization mechanisms; organic matter, lime stone and iron, and added with different combination. For determining the changes in the extractable heavy metals, water soluble, Mehlich-3, Toxicity Characteristic Leaching Procedure, Simple Bioavailability Extraction Test method were applied as chemical assessments for metal stabilization. For biological assessments, soil respiration and root elongation of bok choy (Brassica campestris ssp. Chinensis Jusl.) were determined. CONCLUSION: It was revealed that lime stone reduced heavy metal mobility in acid soil by increasing soil pH and iron was good at stabilizing heavy metals by supplying adsorption sites in alkali soil. Organic matter was a good source in terms of supplying nutrients, but it was concerning when accounting for increasing metal availability.

Responses of Soil Rare and Abundant Sub-Communities and Physicochemical Properties after Application of Different Chinese Herb Residue Soil Amendments

  • Chang, Fan;Jia, Fengan;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권5호
    • /
    • pp.564-574
    • /
    • 2022
  • Microbial diversity in the soil is responsive to changes in soil composition. However, the impact of soil amendments on the diversity and structure of rare and abundant sub-communities in agricultural systems is poorly understood. We investigated the effects of different Chinese herb residue (CHR) soil amendments and cropping systems on bacterial rare and abundant sub-communities. Our results showed that the bacterial diversity and structure of these sub-communities in soil had a specific distribution under the application of different soil amendments. The CHR soil amendments with high nitrogen and organic matter additives significantly increased the relative abundance and stability of rare taxa, which increased the structural and functional redundancy of soil bacterial communities. Rare and abundant sub-communities also showed different preferences in terms of bacterial community composition, as the former was enriched with Bacteroidetes while the latter had more Alphaproteobacteria and Betaproteobacteria. All applications of soil amendments significantly improved soil quality of newly created farmlands in whole maize cropping system. Rare sub-communitiy genera Niastella and Ohtaekwangia were enriched during the maize cropping process, and Nitrososphaera was enriched under the application of simple amendment group soil. Thus, Chinese medicine residue soil amendments with appropriate additives could affect soil rare and abundant sub-communities and enhance physicochemical properties. These findings suggest that applying soil composite amendments based on CHR in the field could improve soil microbial diversity, microbial redundancy, and soil fertility for sustainable agriculture on the Loess Plateau.

Mechanism of P Solubilization in Vermicompost Treated Red Lateritic Soils

  • Pramanik, Prabhat;Chakraborty, Hritesh;Kim, Pil-Joo
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2011년도 30주년 정기총회 및 국제심포지엄
    • /
    • pp.188-195
    • /
    • 2011
  • Red lateritic soils are typically low in total organic carbon (TOC) and available phosphorus (AP) content and continuous fertilization is required to obtain desired crop yield. In this experiment, cattle manure in three forms (air-dried, composted and vermicomposted) were applied to red lateritic soil to study their effect on TOC and AP content of soil and probable mechanism of P-solubilization as affected by these treatments were also studied. Vermicompost was the most effective to solubilize insoluble P in red lateritic soil (Alfisols) as compared to other organic amendments (air-dried cattle manure and compost). The highest SPA in vermicompost-treated soil attributed to the comparatively higher concentration of all the three SPA isozymes in these soils. The maximum P-solubilization in these soils might be attributed to the highest SPA and presence of several organic acids like citric, lactic and oxalic acids in vermicompost-treated soils. Since, vermicompost application also increased TOC, mineralizable N and exchangeable K content of soil, vermicompost could be considered as the most rational organic amendment to improve chemical properties of red lateritic soils.

  • PDF

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.