• Title/Summary/Keyword: Organic acid material

Search Result 384, Processing Time 0.029 seconds

Effects of Acid Fog and CaCl2 on the Corrosion Fatigue Strength of Structural Steel (구조용 강재의 부식피로 강도에 미치는 산성안개 및 염화칼슘의 영향)

  • Kim, Min-Gun;Kim, Myoung-Sub
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.17-26
    • /
    • 2001
  • The fatigue strength of SM55C has significantly decreased by 83% compared with atmosphere where distilled exists due to strong erosive action of acid fog. The reason is inferred in a way that strong acid erosive material such as acid fog act and give rise to multi-site crack on the surface. Several fatigue clacks occurred under the acid fog repeat the process of division and unification on the surface and form a long non-propagating crack throughout the circumference of experimented steel. However, in the depth, many parts do not show much trace of unification, and the depth is not as big as the one of normal crack shape. 10% of $CaCl_2$ causes strong erosive reaction to material. Then eventually make the life of fatigue shooter. On the other hand, 20% of $CaCl_2$ beings about oxidized material organic crack closing due to weak erosive reaction.

  • PDF

In-situ Characterization of Electrochemical and Frictional Behaviors During Copper CMP

  • Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.227-230
    • /
    • 2004
  • As the organic acids were added in the slurry, zeta potential of alumina was changed to negative value and IEP value was shifted from alkaline to acidic pH. In citric acid based slurry, Cu surface continuously dissolved and etching depth linearly increased. On the contrary, passivation layer was grown on Cu surface in oxalic acid based slurry. As the platen rotation speed increased, Preston coefficient decreased in both slurries. With oxalic acid based slurry, at low velocity, removal rate is high value because of high friction force compared to citric acid based slurry. As platen velocity increased, removal of Cu in citric acid based slurry became higher value than oxalic acid based slurry. Typical lubrication behaviors were observed in both slurries. As Sommerfeld number increased, COF values gradually decreased and then re-increased. It indicated that lubrication was changed to direct contact or semi-direct contact mode to hydro-lubrication mode.

  • PDF

Recovery of Cobalt from Waste Cathode Active Material Using Organic Acid (폐 리튬이온 배터리 양극으로부터 유기산을 이용한 코발트 회수)

  • Moon, Ji-Hoon;Ahn, J.E.;Kim, Hyun-Jong;Sohn, S.H.;Lee, H.W.;Kim, H.S.
    • Applied Chemistry
    • /
    • v.16 no.1
    • /
    • pp.73-76
    • /
    • 2012
  • Due to the developments of communications equipment and electronic devices, lithium ion secondary battery usage is growing. Along with demand increasing, the amount of scrap has been steadily increasing. In this study, method of cobalt recovery using organic eco-friendly is proposed. Sulfuric acid, Malic acid, Citric acid at reflux device had good cobalt leaching efficiency. And Sulfuric acid, Malic acid at the autoclave increased cobalt leaching efficiency.

Deposition Transfer and Electrical Properties of Arachidic acid and Stearic acid (Arachidic acid와 Stearic acid의 누적전이와 전기특성)

  • 최영일;송진원;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.764-767
    • /
    • 2001
  • Because using LB method, result that produce Arachidic acid and Stearic acid LB film and measure the accumulation characteristic and electrical characteristic is as following. Organic monolayers of surface of the water compression each 9 layer's LB film to slide glass and manufactured MIM device compressing molecular film only. Could confirm that accumulation was good seeing as absorption coefficient and SEM picture, AFM picture that prevent manufactured LB films. Formation of domain of coexistence form that prevent LB film is indefinite and distinction of border side was not clear, and could know that roughness appears greatly. Obtained current by applied voltage could know that is proportional almost, though Arachidic acid appeared as bulk of current that happen in equaler certification voltage than Stearic acid is less, this alkyl chain longer Arachidic acid that serving relations special quality is superior know can .

  • PDF

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Gas Response and Electrical Properties of Organic Ultra-thin Films (유기 박막의 전기적 특성 및 가스 반응 특성)

  • 박재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.820-825
    • /
    • 1998
  • We deposited stearic acid LB films by using Langmuir-Blodgett (LB)method and investigated anisotropy electrical conduction characteristics by I-V measurement for horizontal direction and vertical direction. Also, we measured gad response between deposited LB films and organic gas for various temperature(0~8$0^{\circ}C$) by 9MHz At-cut quartz crystal microbalance. The LB films have electrical conduction characteristics such as semiconducting and insulating properties. The is, the conductivity of LB films for the horizontal and vertical direction is about 10\ulcornerS/cm and 10\ulcorners/cm, respectively. the frequency shift of stearic acid LB films for the organic gases depended on the mass change by the surface adsorption and the inner penetration to the sensing films. The resonant frequency shift of the quartz crystal microbalance for temperature properties of LB films is thought to the effect of the rearrangement or the damage pf LB films above the melting point and the mobility increasement of the organic gas by the temperature rising.

  • PDF

Quality Characteristics of Meju According to Germination Time of Raw Soybean (Glycine max: Hwanggeumkong)

  • Choi, Ung-Kyu;Jeong, Yeon-Shin;Kim, Mi-Hyang;Lee, Nan-Hee;Hwang, Young-Hyun
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.386-391
    • /
    • 2007
  • This study was conducted to observe quality characteristics of whole soybean meju fermented with germinated soybean (Glycine max: Hwanggeumkong). The germination rate after 24 hr was $23.0{\pm}1.2%$, then increased rapidly to $90.2{\pm}1.3%$ at 36 hr of germination, and finally reached a level of $99.4{\pm}0.3%$ at 60 hr of germination. It was confirmed that the total isoflavone content immediately after soaking was 100.1 mg%, increasing during the beginning of the germination process; it continued to increase to 114.0 mg% by 24 hr of germination, but decreased thereafter. The isoflavone content at 60 hr of germination was 101.6 mg%. A total of 6 organic acids were detected, and total organic acid content ranged from 963.1-1,145.3 mg%. Differences based on the degree of germination in the raw material were insignificant. The free amino acid levels of the whole soybean meju made from non-germinated soybeans and from soybeans that had germinated 48 hr were 2,580.9 and 2,519.7 mg%, respectively. The content of glutamic acid was highest followed by aspartic acid, lysine, leucine, and proline.

One-step Fabrication of a Tannic Acid-Transition Metal-Polymer Gel as a Pressure-Sensitive Adhesive (타닌산-전이 금속-고분자로 구성된 젤의 단일 단계 합성과 점착제로의 이용)

  • Lee, Jaehong;Lee, Kyoungmun;Choi, Siyoung Q.
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.176-183
    • /
    • 2020
  • In this study, synthesis of a hydrogel consisted of a coordination bond network between small organic molecules and transition metals had been carried out. By adding a tackifying material to the gel, the potential of the gel to be used as an adhesive material had been also confirmed. Synthesis of the adhesive had been done with simple mixing of 3 components: tannic acid, transition metal, and polymer. The tannic acid molecule possesses multiple hydroxyl groups that can form coordination bonds with the transition metals and hydrogen bonds with the hydrophilic polymers. Due to the morphology of the metal-organic complex and polymer dispersed in water, the fabricated material exhibited high adhesiveness and cohesiveness. Optimizing the rheological property had been conducted for use in adhesive by the synthesis with varying the transition metal (Fe3+, Ti4+), polymer, and treatment conditions. Rheological measurement results demonstrate the promising potential of the material as a bio-compatible and versatile pressure-sensitive adhesive with both high adhesiveness and cohesiveness.