• Title/Summary/Keyword: Organic Rankine Cycle (ORC)

Search Result 78, Processing Time 0.03 seconds

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

Effect on the Cycle by the Properties of Working Fluids Using Organic Rankine Cycle (유기랭킨사이클의 작동유체 물성치가 사이클에 미치는 영향에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • Several working fluids for Organic Rankine Cycle(ORC) were recommended by many researchers. However, the recommended optimal working fluids were not exactly same because the operating conditions of ORC and application were different. The major parameter to select the working fluid for ORC was the temperature of available thermal energy. In this study, low-grade thermal energy was used for the heat source for ORC and the appropriate working fluids were searched among 26 candidate working fluids. The requirements to be a working fluid for ORC were reviewed and the cycle analysis for simple cycle was conducted with $75^{\circ}C$ and $35^{\circ}C$ at the turbine inlet and exit, respectively. R600, R601, toluene were best candidates if the system could work without leaking the working fluid. Next, R236ea, R245ca, R245fa were recommended because they are not inflammable working fluids as well as better efficiency.

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

Comparative Exergy Analysis of Kalina and Organic Rankine Cycles for Conversion of Low-Grade Heat Source (저등급 열원의 변환을 위한 칼리나 사이클과 유기 랭킨 사이클의 엑서지 성능의 비교 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;KO, HYUNG JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • The organic Rankine cycle (ORC) and the Kalina cycle system (KCS) are being considered as the most feasible and promising ways to recover the low-grade finite heat sources. This paper presents a comparative exergetical performance analysis for ORC and Kalina cycle using ammonia-water mixture as the working fluid for the recovery of low-grade heat. Effects of the system parameters such as working fluid selection, turbine inlet pressure, and mass fraction of ammonia on the exergetical performance are parametrically investigated. KCS gives lower lower exergy destruction ratio at evaporator and higher second-law efficiency than ORC. The maximum exergy efficiency of ORC is higher than KCS.

Thermodynamic Efficiencies of Organic Rankine Cycles with a Feed Liquid Heater or Regenerator (급액가열기, 재생기를 적용한 유기랭킨사이클(ORC)의 열역학적 효율에 관한 해석적 연구)

  • Park, Chang-Yong;Hong, Woong-Ki;Kim, Jung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.662-669
    • /
    • 2011
  • A numerical study was performed for thermodynamic efficiencies of a basic ORC (Organic Rankine Cycle), ORC with a FLH (Feed Liquid Heater), and ORC with a regenerator. The efficiencies of the basic ORC were higher in the order of R113, R123, R245ca, and R245fa for its working fluids. It was confirmed that an optimal FLH pressure existed to maximize efficiency of the ORC with a FLH. A correlation was developed to predict the optimal FLH pressure as a function of evaporation and condensation pressure and its average absolute deviation was 0.505%. The efficiency enhancement of the basic ORC with a FLH was higher than that with a regenerator. It was presented that the basic ORC efficiency could be improved more than 10% by a FLH with $30^{\circ}C$ condensation and over $110^{\circ}C$ evaporation temperatures.

Performance Analysis of an ORC System for Two Different Working Fluids (두 종류의 다른 작동유체가 ORC 시스템의 성능에 미치는 영향)

  • Chang, Hong-Soon;Song, Yeong-Kil;Han, Young-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.413-417
    • /
    • 2013
  • The organic Rankine Cycle (ORC) uses a kind of refrigerant as a working fluid that evaporates at relatively low temperature, as the Rankine Cycle uses superheated steam as the working fluid. A small scale ORC test bench was installed, and two different working fluids (R245fa and R134a) were injected into the test bench. The test bench was in operation with the two different working fluids under the same conditions. The effects against the system performance from the different working fluids were analysed, and root causes were identified. Other factors reflecting the power generation efficiency were also found. A conclusion was drawn, that R245fa makes the system perform better, than R134a.

Performance Analysis of 1MW Organic Rankine Cycle with Liquid-Vapor Ejector using Effluent from Power Plant (화력발전소 폐열에 따른 작동유체별 액-증기 이젝터를 적용한 1MW급 ORC의 성능 분석)

  • Kim, Hyeon-Uk;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.120-125
    • /
    • 2014
  • In this paper, suitable working fluid of 1MW Organic Rankine Cycle(ORC) with liquid-vapor ejector using effluent from power plant is selected. The results of comparison performance of 5 refrigerants are as follows; R600a, R134a, R1270, R236fa, R235fa. The operating parameters considered in this study include the condensation capacity evaporation capacity and efficiency. As a result of comparison of basic ORC system and with liquid-vapor ejector, with ORC system presents the higher system efficiency since the ejector makes the turbine outlet pressure lower than condensation pressure through its pressure recovery. Also, this ejector ORC system is advantageous in miniaturizing the size of components owing to decrease of evaporation capacity and condensation capacity.