• Title/Summary/Keyword: Organic Photovoltaic Cell

Search Result 108, Processing Time 0.031 seconds

CHARACTERISTICS OF LOW-TEMPERATURE PROCESSED DYE-SENSITIZED SOLAR CELL BY ELECTROCHEMICAL IMPEDANCE AND PHOTOCURRENT-PHOTOVOLTAGE TRANSIENT SPECTROSCOPY

  • Li, Yuelong;Lee, Doh-Kwon;Kim, Kyung-Kon;Ko, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.381-381
    • /
    • 2011
  • In this study, a TiO2 colloidal sol was synthesized by sol-gel process, which was used as a "glue" agent to enhance interconnection of TiO2 particles in low temperature process for plastic dye sensitized solar cell. The crystalline phase of this TiO2 glue is pure anatase with average particles size of 5 nm, which was characterized by powder X-ray diffraction and high revolution-TEM. The viscous alcoholic paste without any organic binder was prepared from the mixture of commercial P25 powder and glue. Paste composition and sintering process parameters were optimized for high photovoltaic performance based on low temperature process. The electrochemical impedance spectroscopy and photocurrent-photovoltage transient spectroscopy were also employed to investigate the mechanism of electron transport in this binder free TiO2 film system.

  • PDF

Development of Simple Solvent Treating Methods to Enhance the Efficiency of Small-Molecule Organic Solar Cells

  • Kim, Jin-Hyun;Heo, Il-Su;Gong, Hye-Jin;Yu, Yeon-Gyu;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.276-276
    • /
    • 2012
  • The interface morphology of organic active layers is known to play a crucial role in the performance of organic photovoltaic (OPV) cells. Especially, a controlled nanostructure with a large contact area between electron donor (D) and acceptor (A) layers is necessary to improve the power conversion efficiency (PCE) of the cells since the short exciton diffusion lengths in organic semiconductors limit the charge (hole and electron) separation before excitons recombination. In this work, we developed simple solvent treating methods to fabricate a nanostructured DA interface and applied them to enhance the PCE of ZnPc/C60 based small molecule OPV cells. Interestingly, it was observed that the solvent treatment on the donor layer prior to the deposition of the acceptor layer resulted in a significant decrease in PCE, which was due to an existence of undesirable voids at the DA interface. Instead, the solvent vapor treatment after the DA bilayer formation led to densely packed and well dispersed DA contacts. Consequently, 3-fold enhancement of PCE as compared to the untreated bilayer cell was accomplished.

  • PDF

Wet-Chemically Prepared NiO Layers as Hole Transport Layer in the Inverted Organic Solar Cell

  • Lim, Dong-Chan;Kim, Young-Tae;Shim, Won-Hyun;Jang, A-Young;Lim, Jae-Hong;Kim, Yang-Do;Jeong, Yong-Soo;Kim, Young-Dok;Lee, Kyu-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1067-1070
    • /
    • 2011
  • We have demonstrated that solution-based fabrication of NiO films as HTL can be used for the construction of IOSCs. Type of solvent of NiO-solution, and annealing procedure of the active layers were optimized for obtaining a PCE of 3% of IOSC. The photovoltaic performance of NiO-based device is comparable to that of the same type of solar cell using PEDT:PSS instead of NiO. These solution-based processes can be a promising method for a mass production OSCs under ambient condition.

Photovoltaic Properties of Tandem Structure Consisting of Quantum Dot Solar cell and Small Molecule Organic Solar cell

  • Jang, Jinwoong;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.2-249.2
    • /
    • 2015
  • Connecting two or more sub-cells is a simple and effective way of improving power conversion efficiency (PCE) of solar cells, and the theoretical efficiency of this tandem cell is known to reach 85~88% of the sum of the sub-cell's efficiencies. There are two ways of connecting sub-cells in the tandem structure, i.e. parallel and series connection. The parallel connection can increase the short circuit current (Jsc) and the series connection can increase the open circuit voltage (Voc). Although various tandem structures have been studied, the full use of incident light and optimization of cell efficiency is still limited. In this work, we designed series tandem solar cells consisting of lead sulfide (PbS) quantum dots/zinc oxide-based QDSC and zinc phthalocyanine (ZnPc)/C60-based small molecule OSCs. It is expected that the loss of the incident light is minimized because the absorption range of the PbS quantum dots and ZnPc is significantly different, and the Voc increases according to the Kirchhoff's law.

  • PDF

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

Extraction of electrical parameters as a function of post-annealing in organic solar cells (유기 태양전지의 후열처리온도에 따른 전기적 Parameter들의 추출)

  • Kim, Dong-Young;Kim, Ji-Hwan;Lee, Hye-Jee;Kim, Hae-Jin;Sohn, Sun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.460-461
    • /
    • 2009
  • We studied the effects of post-annealing treatment on poly(3-hexylthiophene)(P3HT, donor):[6,6]-phenyl $C_{61}$ butyric acid methyl ester(PCBM, acceptor) blend film as an active layer in the organic solar cells(OSCs). For the formation of the active layer, 3 wt.% P3HT:PCBM solution in chlorobenzene were deposited by spin-coating method. In order to optimize the performance of OSCs, the P3HT crystallization and the redistribution of PCBM cluster at P3HT:PCBM composition as a function of post-annealing condition from room temperature to $200^{\circ}C$ were measured by the Hall effect and the UV-vis Spectrophotometer. We thought that the improved efficiency in the OSCs with post-annealing treatment at $150^{\circ}C$ can be explained by the efficient separation or collection of the photogenerated excitons at donor-acceptor interface by P3HT crystallization.

  • PDF

Characteristics of CIGS film fabricated by non-vacuum process (비 진공으로 제작한 CIGS 박막 특성)

  • Park, Myoung-Guk;Ahn, Se-Jin;Yoon, Jea-Ho;Gwak, Ji-Hye;Kim, Dong-Hwan;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.19-22
    • /
    • 2009
  • A non-vacuum process for fabrication of $CuIn_xGa_{1-x}Se_2$ (CIGS) absorber layer from the corresponing Cu, In, Ga solution precursors was described. Cu, In, Ga precursor solution was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$, $Ga(NO_3)$ and methanol. The Cu, In, Ga precursor solution was mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In, Ga solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CIG/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIGS absorber layer. The CIGS absorber layer selenized at $530^{\circ}C$ substrate temperature for 1h with various metal organic ratio.

  • PDF

Performance and Stability Enhancement of Organic Solar Cells by Surface Treatment Processes of Transparent Electrodes (표면 전처리 공정에 따른 투명전극 계면 특성 변화와 유기 태양전지 성능 및 안정성 향상)

  • Lee, Kwan-Yong;Kim, Do-Hyun;Park, Sun-Joo;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • In this study, we have experimentally analyzed how the surface properties of transparent electrode layer influence the photovoltaic performance of bulk heterojunction organic solar cell by the contact angle measurement and X-ray photoelectron spectroscopy(XPS) observation. As a result, the power conversion efficiency of test devices improved from 0.64% to 1.83% and 2.15% by UV-ozone exposure and $O_2$ plasma treatment, respectively. Thus, we conclude that the surface activation process is very important for better performance and stability in addition to the cleaning process of carbonate residue on the surface.

Mechanochemically Synthesized Cu2Zn(Sn,Ge)S4 Nanocrystals and Their Application to Solar Cells (기계화학적 방법으로 합성한 Cu2Zn(Sn,Ge)S4 나노결정과 이를 이용하여 제조한 태양전지)

  • Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.114-118
    • /
    • 2016
  • $Cu_{1.8}Zn_{1.2}(Sn_{1-x}Ge_x)S_4$ (CZTGeS) nanocrystals were mechanochemically synthesized from elemental precursor powders without using any organic solvents and any additives. The composition of CZTGeS nanocrystals were systematically varied with different Ge mole fraction (x) from 0.1 to 0.9. The XRD, Raman spectroscopy, high-resolution TEM, and diffuse reflectance studies show that the as-synthesized CZTGeS nanocrystals exhibited consistent changes in various structural and optical properties as a function of x, such as lattice parameters, wave numbers for $A_1$ Raman vibration mode, interplanar distances (d-spacing), and optical bandgap energies. The bandgap energy of the synthesized CZTGeS nanocrystals gradually increases from 1.40 to 1.61 eV with increasing x from 0.1 to 0.9, demonstrating that Ge-doping is useful means to tune the bandgap of mechanochemically synthesized nanocrystals-based kesterite thin-film solar cells. The preliminary solar cell performance is presented with an efficiency of 3.66%.

Photovoltaic effect of Polymer/CNT Hybrid Organic Photovoltaic Cell (고분자/CNT 하이브리드 유기태양전지의 광기전 효과)

  • Ahn, Joon-Ho;Jin, Sung-Hwan;Hong, Soon-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.466-466
    • /
    • 2008
  • 최근 유가가 배럴당 120달러를 돌파하면서 많은 사람들에게 에너지 문제에 대한 경각심과 자원의 효율적 이용이라는 점에서 많은 생각을 하게 된다. 유기광기전소자는 실리콘 태양전지에 비해 낮은 전력 변환 효율(PCE)과 짧은 수명 등의 문제로 아직 많은 연구가 필요한 실정이다. 하지만 유연한 광기전소자의 제조나, 페인트 또는 프린트 형태의 광기전소자의 응용 등을 고려할 할 때 쉬운 제조공정, 저렴한 단가 등에서 실리콘 태양전지에 비해 많은 이점을 가지고 있어 많은 사람들의 관심을 끌고 있다. 유기광기전소자의 낮은 효율은 낮은 정공과 전자의 이동도에서 차이가 발생한다. 낮은 이동도는 정공과 전자로 분리되어 전극으로 이동해야 하는데, 정공과 전자의 이동을 고분자로 구성된 광흡수층에서 제한하기 때문에 다른 태양전지에 비해 낮은 전력변환효율을 보이고 있다. 이의 개선을 위해 온 연구에서는 높은 전기 전도도를 보이는 CNT와의 혼합을 통해 유기광기전소자의 전기전도도를 높여 효율의 향상을 꾀하였다. 그 결과, CNT를 혼합한 소자에서는 전류가 증가한 것을 알 수 있었으나, 전체적인 효율의 향상은 꾀하지 못하였다. 이는 소자의 Voc 값의 감소로 인한 것으로 해석된다.

  • PDF