• Title/Summary/Keyword: Organic Particle Size

Search Result 438, Processing Time 0.04 seconds

A Study on the Characteristics of Water Quality According to Particle Size Distribution of Sediments (하상퇴적물의 입도분포에 따른 수질특성에 관한 연구)

  • Park, Sung-Jin;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • Analysis was done on the particle size distribution of sediments flown into Saemangeum from the Mankyung and Dongjin River. The organic pollutants and heavy metal existing in the sediments were analyzed, which was further used to study the properties of pollution in the sediments according to the particle size distribution. Conclusions shown below were made from these analyses. The particle size distribution showed a big difference between the upriver areas of Mankyung and Dongjin River. Particles under $75{\mu}m$ showed to be around 85% at Dongjin River, while it showed to be around 70% at Mankyung River. This kind of distribution in particle size concluded in greatly affecting the contamination density of the sediments. From the analysis done on the soil type of sediments, deposition in Mankyung River categorized into Silty loam and Sandy loam, where Silty loam covered most of area and deposition in Dongjin River categorized into Sand, Loamy sand, Silty loam, Sandy loam. Considering the weight ratio, the density of contamination of the sediments by particle size at Dongjin and Mankyung River has been analyzed to show that organic pollutants and heavy metals occupy more than 70% of the whole contamination in the range under the particle size of $75{\mu}m$.

Characteristics of Blue Carbon Stock by Particle Size of Sediments in Unvegetated Tidal Flats : Hampyeong Bay and Dongdae Bay (비식생 갯벌에서 퇴적물 입도에 따른 블루카본 저장 특성: 함평만과 동대만)

  • Kyeong-deok Park;Dong-hwan Kang;Yoon Hwan So;Won Gi Jo;Byung-Woo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • In this study, sediment cores from unvegetated tidal flats in the Hampyeong Bay (west coastal wetland) and Dongdae Bay (south coastal wetland) were sampled, the blue carbon stock in the sediments was calculated, and the characteristics of the blue carbon stock were analyzed based on particle size of the sediments. The sediments in the Hampyeong Bay tidal flat had large particle size and low mud content, and the Dongdae bay tidal flat had small particle size and high mud content. The organic carbon content and blue carbon stock in the sediments were higher in the Dongdae tidal flat than in the Hampyeong Bay tidal flat. As a result of the regression function, in both the Hampyeong Bay and Dongdae Bay tidal flats, the sediments had the smaller particle size and higher mud contents the higher the organic carbon content and blue carbon stock. The sediments with smaller particle size had the larger specific surface area, so were feasible to adsorb and store more organic matters.

Measurement of Soil Organic Matter Using Near Infra-Red Reflectance (근적외선 반사도를 이용한 토양 유기물 함량 측정)

  • 조성인;배영민;양희성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.475-480
    • /
    • 2001
  • Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.

  • PDF

Studies on The Paper Making Technique and TsaiLun (제지술과 채륜에 관한 연구)

  • JongchanLee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.2
    • /
    • pp.81-99
    • /
    • 1996
  • The characteristics of printing inks are affected, to a greater or lesser extent, by the size and distribution of the pigment particles in the dispersion. Color strength, transparency and gloss increase with a decrease in particle size of pigments and with an increase in surface area of pigments. On the contrary, opacity and lightfastness tend to increases with an increase in particle size of pigments and with a decrease in surface are and particle size if pigments on the physical properties of printing ink which made up vehicles for sheet fed and organic pigment Lake Red C(C.I Pigment Red 53:1) that different surface area and particle size.

  • PDF

Morphological Properties of Poly(ε-caprolactone) Nano/Microcapsules Prepared by Emulsion-diffusion Method (유화-확산법에 의해 제조된 폴리(ε-카프로락톤) 나노/마이크로캡슐의 형태적 특성)

  • Kim, Hea-In;Jeong, Cheon-Hee;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • Poly($\varepsilon$-caprolactone) nano/microcapsules(nmcPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate and poly(vinyl alcohol) (PVA) as an organic solvent and an emulsion stabilizer respectively. The influence of the degree of saponofication of the PVA and the weight ratio of core to wall materials was investigated to design nanocapsules in terms of particle size, morphology, and emulsion stability. The encapsulated nmcPCL were characterized by FT-IR spectrometry, particle size analyzer and scanning electron microscope. Mean size of nanocapsules prepared with PVA with a degree of saponofication of 87% was smaller than those of PVA with a degree of saponofication of 98.5% and the mean particle size of the capsules decreased with increasing core/shell ratio.

Combustion Characteristics of Immobilized Alcohols in Porous Material (다공성 물질에 함침시킨 알콜의 연소특성)

  • 우인성;황명환
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 1994
  • Combustion phenomena(characteristics) of organic solvents including various alcohols Immobilized on ceramic balls were studied. Experiments were performed by burning methyl, ethyl, and propyl alcohol immobilized on sands (particle size 0.35mm) and coramic balls(particle size 1~5mm) to measure mass burning rate, height burning rate and combustion temperature. The longer time from ignition to extinguishment was resualted from the larger particle size of ceramic balls and the smaller size of ceramic balls exhibited the higher mass burning rate. Of alcohols tested the relative magnitude of facilitation of combustion was methyl >ethyl >propyl. Combustion temperatare of alcohols, without regard to the types of alcohols, was not increased with smaller ceramic balls(up to 3mm of particle size). However, with larger ceramic balls, combustion temperatare of alcohols was increased by 40~5$0^{\circ}C$ and the highest combustion temperatare was obtained with sands(particle size 0.35mm). Also, second rising was occurred at the combustion time of I5-20min. and this second rising time was increased with the smaller particle. These results will be able to be used for petrochemical industries using particles to evaluate the danger of fire and explosion.

  • PDF

Evaluation of the physical properties of organic fillers made from agricultural byproducts (농업부산물로 제조된 유기충전제의 물리적 특성 평가)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Young-Hoon;Lee, Se-Ran;Kim, Man-Young;Kim, Chul-Hwan;Kim, Sun-Young;Kim, Jun-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.34-41
    • /
    • 2013
  • In this study, we investigated the physical properties of powders made from agricultural byproducts, including rice straw, peanut husks, and garlic stems, to manufacture a new organic filler used for making paperboard. These materials were collected individually, and then we measured their chemical compositions. The byproducts were ground with a laboratory grinder and fractionated with 60-, 100-, and 200-mesh sieves to make many grades of organic fillers. After the grinding and fractionation, the yield, mean particle size, and particle size distribution of each grade were measured. Particle shapes were also investigated using a scanning electron microscope. The organic filler made from rice straw had the highest yield of the largest particle size group and higher contents of cellulose and hemicellulose than those made from peanut husks and garlic stems. The rice straw also showed more regular particle shapes and a lower aspect ratio than the other agricultural byproducts.

EVALUATION 01 OIL DISPERSION AGENT BY ASSESSMENT 01 COLOR STRENGTH 01 ORGANIC PIGMENT

  • H., Young-Chan;R., Seo-Joon;L., Dong-Wook;H., Soon-Taek
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.73-80
    • /
    • 1998
  • This Study was performed to get the suitable oil dispersion agent by assessment of color strength of organic pigment in non-aqueous systems. Organic pigment is used as a color expression material with other body pigments in the make-up products. But occasionally aggregation or agglomeration occurs for the lack of affinity with medium, This function is the cause of disturbing homogeneous dispersion, and then bring about an instability of products. Our study, research of dispersion mechanism between the pigment and oil phase, has been executed to solve this problem, and find a oil dispersion agent having optimum dispersion condition. Generally dispersion is related to between the solid-liquid mutual properties and electrical phenomena associated with solid-liquid interface. This factor is determined to input energy, milling time, optical properties, particle size, rheological properties, etc. Ideal dispersion state is told that coloring primary solid particle is homogeneously dispersed in medium. Good dispersed colorants are strongly and clearly appeared. We are already known that the particle size of organic pigment, chemical properties and viscosity of medium, refractive index. Consequently We determine the affinity of medium and organic pigment by measuring of color strength in the same mechanical condition. UV-VISIBLE RECORDING SPECTRO PHOTOMETER is used for measuring apparatus. We can decided the dispersion level of oil dispersion agent by measuring absorbance of color strength in the visible range that diluted medium for colloid colorant particles.

  • PDF

Removal Characteristics of Organic Contaminants by Ultrasonic Soil Washing (토양 세척 시 초음파 적용에 따른 유기 오염물 제거 특성 평가)

  • Lim, Chan-Soo;Kim, Seog-Ku;Kim, Weon-Jae;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2014
  • Cavitation generated by ultrasonic irradiation can enhance the diffusional transport of organic contaminants from soil surfaces or pores. Therefore, ultrasound soil washing can be an alternative of traditional soil washing process. In this study, soil was artificially contaminated with n-tetradecane, n-hexadecane and phenanthrene. A plate type ultrasonic reactor at 25 kHz frequency and 1000W power was used for laboratory soil washing experiments. Ultrasonic soil washing efficiency was compared with those of traditional soil washing using mechanical mixing. Various operational parameter such as soil/liquid ratio, irradiation time, particle size, and soil organic matter content was tested to find out the optimum condition. It was found that ultrasonic soil washing demonstrates better performance than mechanical soil washing. Optimum soil:liquid ratio for ultrasonic soil washing was 1 : 5. Desorption of organic contaminants from soils by ultrasonic irradiation was relatively fast and reached equilibrium within 10 minute. However, decrease in the soil particle sizes by ultrasonic irradiation results in re-adsorption of contaminants to soil phase. It was also observed that soil particle size distribution and soil organic matter content have significant effects on the efficiency of ultrasonic soil washing.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.