• 제목/요약/키워드: Organic Loading Rate

검색결과 280건 처리시간 0.024초

Treatment of High Concentration Organic Wastewater with a Sequencing Batch Reactor (SBR) Process Combined with Electro-flotation as a Solids-liquid Separation Method

  • Choi, Younggyun;Park, Minjeong;Park, Mincheol;Kim, Sunghong
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.395-399
    • /
    • 2014
  • Operation characteristics of the sequencing batch reactor (SBR) process with electro-flotation (EF) as a solid liquid separation method (EF-SBR) were investigated. EF-SBR process showed excellent solid-liquid separation performance which enabled to separate biosolids from liquid phase within 30 min and to extend cyclic reaction time. Although influent organic loading rate was increased stepwise from 5 to 15 g COD/day, food to microorganisms (F/M) ratio could be maintained about 0.3 g COD/g VSS/day in EF-SBR because biomass concentration could be easily controlled at desired level by EF. However, it was impossible to increase biomass concentration at the same level in control SBR (C-SBR) process because solid-liquid separation by gravity settling showed a limitation at higher mixed liquor suspended solids (MLSS) concentration with 60 min of settling time. Total chemical oxygen demand (TCOD) removal efficiency of EF-SBR process was not decreased although influent organic loading rate became 3 times higher than initial value. However, it was seriously deteriorated in C-SBR process after increasing the rate over 10 g COD/day, which was accounted for insufficient organic removal by relatively higher food to microorganisms (F/M) ratio as well as biosolids wash-out by a limitation of gravity sedimentation.

준혐기-호기 생물막 공정을 이용한 돈사폐수 처리 (Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process)

  • 임재명;한동준
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

연속 회분식 고온 혐기성 공정의 운전특성 연구 (Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature)

  • 이종훈;정태학;장덕
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

농업용수 수질개선을 위한 침강지의 수질정화 특성 (Water Purification Characteristics of Sedimentation Basin for Agricultural Water Quality Improvement)

  • 김형중;김동환
    • 한국관개배수논문집
    • /
    • 제21권1호
    • /
    • pp.55-63
    • /
    • 2014
  • A sedimentation basin for agricultural water quality improvement was researched to analyze the water quality purification characteristics. The sedimentation basin constructed at the inlet of Gamdon reservoir in Muan-gun, Jeollanam-do was selected as the research field of this study. The surface area of the sedimentation basin is $34,000m^2$, volume is $122,000m^3$, and hydraulic retention time is 0.3hr~7.3day. The average influent loading of SS was 156.6kg-SS/d, and the effluent loading was 67.5kg-SS/d with the average removal rate of 56.9%. The average influent loadings of BOD and COD were 33.0kg-BOD/d and 60.3kg-COD/d respectively, and the effluent loadings were 26.4kg-BOD/d and 48.6kg-COD/d with the average removal rate of 20.1% and 19.3% respectively. Therefore, the results of this study show that a sedimentation basin can purify SS and organic matters. The average influent loadings of T-N and T-P were 28.7kg-TN/d and 2.97kg-TP/d respectively, and the effluent loadings were 16.3kg-TN/d and 1.41kg-TP/d with the average removal rate of 43.0% and 52.6% respectively. In conclusion, the overall results of this study show that a sedimentation basin is a feasible alternative to purify organic matters and nutrients.

  • PDF

미생물 연료전지 반응조의 수리학적 체류시간에 따른 유기물질 처리효율과 전력생산 (Electric Power Generation and Treatment Efficiency of Organic Matter on Hydraulic Retention Time in Microbial Fuel Cell Reactor)

  • 최찬수;임봉수;서뢰;송규호
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.159-166
    • /
    • 2009
  • This study has been attempted to generate electricity, while simultaneously treating artificial organic wastewater using both batch and continuous microbial fuel cells (MFCs). In the batch MFC, current-voltage curve showed an onset potential of -0.69 V vs. Ag/AgCl. The potential range between this potential and 0 potential displayed an available voltage for an automatic production of electric energy and glucose, which was oxidized and treated at the same time. The 486 mg/L glucose solution showed the maximum power of $30mW/m^2$ and the maximum current density of $75mA/m^2$ shown in the power curve. As a result, discharging of the cell containing COD 423 mg/L at the constant current density of $60mA/m^2$ showed a continuous electricity generation for about 22 hours that dropped rapidly due to dissipating of organic material. Total electric energy production was 18.0 Wh. While discharging, the pH change was low and dropped from pH 6.53 to 6.20 then increased to 6.47, then stabilized at this charge. The COD treatment efficiency was found to be 72%. In the continuous MFC, COD removal tends to increase as the hydraulic retention time is increased. At one day of hydraulic retention time as the maximum value reaches the COD removal efficiency, power production rate and power production rate per COD removal that were obtained were 68.8%, $14mW/m^2$, and $20.8mW/m^2/g$ CODrm, respectively. In the continuous MFC, the power production rate per COD removal increases as the hydraulic retention time is increased and decreases as the organic loading rate is increased. At the values lower than an organic loading rate of $1kgCOD/m^3/d$, the values higher than about $18.1mW/m^2/g$ CODrm could be obtained.

혐기성 소화-고온 호기법에 의한 유기성폐기물의 처리와 생성열의 재활용 검토 (Treatment of Organic Wastes and Reuse of Bio-energy from the Anaerobic Digestion - Thermophilic Oxic Precess)

  • 양재경;최경민
    • 유기물자원화
    • /
    • 제9권1호
    • /
    • pp.79-89
    • /
    • 2001
  • 본 연구에서는 유기성 폐기물의 분해시 발생되는 열을 재활용하고, 혐기성 소화액의 퇴비화를 위한 혐기성 소화 - 고온 호기법(Anaerobic Digestion-Thermophilic oxic process, ADTOP)을 고안하고, 유기물 분해와 수분의 증발 그리고 생성열의 적용성을 검토하였다. 유기성 폐기물인 중화요리 잔반은 TOP에 의해 완전처리가 가능하며, 최대 용적부하는 $55kg/m^3{\cdot}d$, 투입된 수분은 거의 완전히 증발되었으며 탄소수지에 의한 탄소성 유기물의 이산화탄소 전환율은 90.5%이었다. 고온 혐기성 소화를 위한 적정온도(약$55^{\circ}C$)를 유지하기 위한 최소용적부하는 $45.0kg/m^3{\cdot}d$이었다. 혐기성 소화조의 온도는 수리학적 체류시간이 짧아짐에 따라 지수적 온도강하를 나타내었으며 고온 혐기성소화를 위한 최소 HRT는 약 10일 정도로 판단된다. 따라서 고온 호기법을 이용한 유기성폐기물의 처리시 발생되는 열에너지는 혐기성 소화와 같은 체류시간이 비교적 긴 공정에서 효과적일 것으로 판단된다. 혐기조의 유기물 부하 $1.1kg-COD/m^3{\cdot}d$, 고온 호기조 유기물의 투입량 $50kg/m^3$, 공기 유입량 $250{\ell}/m^3{\cdot}min$의 조건에서 혐기성 소화효율은 90% 이상으로 나타났다.

  • PDF

미생물배양조를 결합한 회전원판법에 의한 하수처리 효과 (The Effect of Wastewater Treatment by Rotating Biological Contactors with HBR)

  • 임봉수;어성욱;정원문
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.501-512
    • /
    • 2000
  • This study was carried out to develop the new process for RBC process which is capable of nutrient removal and to obtain its design parameters for Sludge Settling Type Rotating Biological Contactors by comparing RBC with RBC combined with HBR (Hanmee Bio-Reactor). To achieve more than 90% of organic removal efficiency, organic loading rate less than $6.0g\;BOD/m^2/d$ is recommended. Nitrification rate was about 90% at $6.0g\;BOD/m^2/d$. TN removal efficiency of RBC+HBR was higher than those of RBC1 and RBC2. TN removal efficiency at condition of $5.0g\;BOD/m^2/d$ was about 60% in RBC1. When BOD loading rate was $6.0g\;BOD/m^2/d$. TN removal efficiencies in RBC2 and RBC+HBR were about 70%, 80%, respectively. TP removal efficiency was more than about 67% for RBC1, about 63% for RBC2 and about 71 % for RBC+HBR at the same loading rate. From the blank experiment to observe removal efficiency in the first stage, it can be known that COD removal efficiency was about 30% and suspend solids settling rate was about 45%. It was proved that RBC+HBR is much better in sludge dewatering than RBC.

  • PDF

Performance of a submerged membrane bioreactor for wastewater mimicking fish meal processing effluent

  • Lopez, Guadalupe;Almendariz, Francisco J.;Heran, Marc;Lesage, Geoffroy;Perez, Sergio
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.263-271
    • /
    • 2018
  • The objective of this work was to analyze organic matter removal, nitrification, biomass growth and membrane fouling in a submerged flat-sheet membrane bioreactor, fed with synthetic wastewater, of similar composition to the effluents generated in a fish meal industry. After biomass acclimatization with saline conditions of 12 gNaCl/L and COD/N ratio of 15 in the bioreactor, results showed that the organic matter removal was higher than 90%, for all organic loading rates (0.8, 1, 1.33 and $2gCOD/L{\cdot}d$) and nitrogen loading rates (0.053, 0.067, 0.089 and $0.133gN/L{\cdot}d$) tested during the study. However, nitrification was only carried out with the lowest OLR ($0.8gCOD/L{\cdot}d$) and NLR ($0.053gN/L{\cdot}d$). An excessive concentration of organic matter in the wastewater appears as a limiting factor to this process' operating conditions, where nitrification values of 65% were reached, including nitrogen assimilation to produce biomass. The analysis of membrane fouling showed that the bio-cake formation at the membrane surface is the most impacting mechanism responsible of this phenomenon and it was demonstrated that organic and nitrogen loading rates variations affected membrane fouling rate.

혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구 (A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR)

  • 김재우;장인용
    • 한국환경보건학회지
    • /
    • 제19권2호
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구 (A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor)

  • 서종환;이철승
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.