• Title/Summary/Keyword: Organic Fertilizer (100%)

Search Result 249, Processing Time 0.024 seconds

The Morphology and Physical and Chemical Characteristics of the Changpyeong Series Derived from Old Alluvium (홍적층(洪積層)에 기인(基因)된 적황색토(赤黃色土)의 형태(形態) 및 물리적(物理的) 화학적(化學的) 특성(特性)에 관(關)한 연구(硏究) - 창평통(昌平統)에 관(關)하여 -)

  • Shin, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 1970
  • This study examined the morphology and physical and chemical characteristics of the Changpyeong series developed on gently sloping to rolling relief on dissected old paddiplains and terraces. This soil has dark brown silty clay loam A horizons, very thick dark red to red silty clay or clay Bt horizons, and C horizons of old alluvial materials frequently with strongly weathered round cobbles and pebbles. It is strongly acid with a low organic matter content, relatively low in cation exchange capacity, but with relatively high base-status based on amount of extractable cations. There is no obvious changes in particle size distribution with depth and textural B horizons probably have not been formed by podzolization but formed by mechanical movement of clay. This soil is classified as Typic Hapludalfs in USDA 7th approximation and Brunic Luvisols in FAO classification system.

  • PDF

Studies on the Cause of Injury by Continuous Cropping and Soil Conditioner Application on Red Pepper(Capsicum annuum L.) I. Studies on the Cause of Injury by Continuous Cropping of Red Pepper (고추의 연작(連作) 장해요인(障害要因)과 토양개량제(土壤改良劑) 시용효과(施用效果) I. 고추연작(連作) 장해실태(障害實態) 조사(調査))

  • Hwang, N.Y.;Ryu, J.;So, J.D.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 1988
  • The present experiment was conducted to investigate causes affecting the reduction of red pepper production in the continuous cultivation upland soil from 1985 to 1986 in Imsil Chonbuk Province. The results obstained are summarized as follows: 1. Area ratio of continuous cultivation 2 years was 12.7%, 3 years 6.8% and over 4 years 48.9%. 2. Soil hardness and volume of solid and liguid of red pepper continuous cultivation soil were higher than those of one year cultivation, while pH and content of organic matter of continuous cultivation soil were low. The exceeding optimum level of phosphorus and potassium appeared factors affecting and reduction of red pepper of continuous cultivation soil. 3. Microflora density in continuous cultivation soil was high but bacteria/fungi (B/F) and actinomycetes/fungi (A/F) ratio were low. 4. The density of soil nematodes in continuous cultivation soil were higher than that in one year cultivation soil, however, the steeper and better drainage soil lowered the density of nematodes. 5. Continuous cultivation over 4 years showed 14.3% of plants diseased by phytophthora while 0.7% in one year cultivation soil.

  • PDF

Physico-Chemical Properties of Paddy Soil and Actual Farming Conditions in Gyehwa Reclaimed Tidal Land (계화간척지 논토양의 물리화학적 특성 및 영농실태)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Jung, Ji-Ho;Kang, Seung-Weon;Kim, Jae-Duk;Jung, Kwang-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • In order to establish the fertilization and soil management method in Gyehwa reclaimed tidal land, we investigated soil property and actual farming condition. Soil properties of 100 field paddy soil and farming surveys of 177 farm households were conducted. Average of effective soil depth was 17.8 cm, which was very smaller than the optimum level 50 cm. The hardness and bulk density of subsoil were $12.40kg\;cm^{-2}$ and $1.59g\;cm^{-3}$, respectively. These results showed that soil physical condition of Gyehwa reclaimed tidal land was very poor. Soil salinity ranged from 0.03 to 0.12%, and average of pH was 6.0, which implied that desalinization of Gyehwa reclaimed tidal land was progressed. However, soil nutrients in Gyehwa reclaimed tidal land were very unbalanced conditions as following, available phosphate $58mg\;kg^{-1}$, available silicate $85mg\;kg^{-1}$, cation exchangeable capacity $7.4cmolc\;kg^{-1}$ and organic matter $8.6g\;kg^{-1}$. On the farm household in Gyehwa reclaimed tidal land, fertilization amounts were $200-54-61(N-P_2O_5-K_2O)kg\;ha^{-1}$ They mainly practiced spring tillage(84%) rather than autumn tillage(16%), and only 14% of them applied rice straw annually in the paddy soil.

Estimation of Rice Cultivation Impacts on Water Environment with Environmental Characteristics and Agricultural Practices by Nitrogen Balances (질소수지에 의한 환경특성과 영농방법별 벼농사의 수질영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.439-446
    • /
    • 2009
  • Nitrogen balance in the regional scale which was calculated the difference between nitrogen input and output was estimated to assess the impact of rice cultivation on water environment. Nitrogen balances in Gyeonggi province, where nitrogen concentration in irrigation water was high and in Chungnam province, where nitrogen absorbtion by rice was high, were -5.4 and -8.3 kg $-8.3kg\;ha^{-1}\;yr^{-1}$, respectively. Nitrogen balances of paddy field in Gangwon province, where nitrogen output was small and irrigation water was clean, and in Gyeongnam province, where organic matter content of soil was high and rice yield was low, were 4.9 and $14.0kg\;ha^{-1}\;yr^{-1}$, respectively. Average nitrogen balance and total nitrogen absorption of paddy field in Korea were estimated to $-0.3kg\;ha^{-1}\;yr^{-1}$ and $-3,315Mg\;yr^{-1}$, respectively. When the nitrogen concentration in irrigation water was increased by $1mg \;L^{-1}$, nitrogen balance of rice paddy changed by $-2.91kg\;ha^{-1}\;yr^{-1}$. Also, when nitrogen fertilizer applied was decreased from 110 to $90kg\;ha^{-1}$ and the same harvest was maintained, the nitrogen absorption by rice paddy from irrigation water was estimated to increase by 10,600 Mg per year in Korea. However, in cases, the harvest was reduced to either 90% or 85%, nitrogen balances were changed from -11.7 to -2.3 and $2.4kg\;ha^{-1}$, respectively. These results suggest that the reduction of nitrogen fertilizer use may not always lead to a negative nitrogen balance and sustainable agriculture can achieve by not cutting down the use of fertilizer only but by reduction of fertilizer application concurrently by maintenance of harvest and by utilization of environmental characteristics such as nutrient contents in irrigation water and soils.

Effect of Band Spotty Fertilization on Yields and Nutrient Utilization of Garlic(Allium sativum L.) in Plastic Film Mulching Cultivation (마늘 재배시 양분이용율 및 수량에 미치는 국소시비 효과)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Shin, Bok-woo;Kim, Jae-Duk;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.380-385
    • /
    • 2006
  • To establish law-put fertilization technique and increase of fertilization efficiency during cultivation of vinyl mulching for plant, the improvement of soil properties, nutrition efficiency and yields by band spotty fertilization(BSF) using band spotty applicator was carried out at garlic(Alltuiti sativum L.) field in Honam Agricultural Research Institute from 2001 to 2002 for 2 years. The value of pH and the content of total nitrogen, organic matter, exchangeable potassium and calcium of soil after experiment were increased but the content of available phosphate was decreased than soil before experiment. Uptake amounts of nitrogen fertilized by plants were more than in BSF plots($89{\sim}111kg\;ha^{-1}$) compared to in CF(conventional fertilization) Plot ($76kg\;ha^{-1}$) and nitrogen use efficiency were high in BSF plots(42.9~58.2%) compared to in CF plot(34.9%). Also Uptake amounts of potassium fertilized by plants were more than in BSF plots($34{\sim}58kg\;ha^{-1}$) compared to in CF plot($33kg\;ha^{-1}$) and potassium use efficiency were high in BSF plots(21.6~41.2%) compared to in CF plot(19.4%). Residual amount of nitrogen fertilized on soil were more than in BSF plots($38{\sim}54kg\;ha^{-1}$) compared to in CF plot($22kg\;ha^{-1}$) while loss amount of nitrogen fertilized on soil were less than in BSF plots($32{\sim}53kg\;ha^{-1}$) compared to in CF plot($120kg\;ha^{-1}$). Also Residual amount of potassium fertilized on soil were more than in 100% BSF plot($109kg\;ha^{-1}$) compared to in CF plot($72kg\;ha^{-1}$) while loss amount of nitrogen fertilized on soil were less than in BSF plots($14{\sim}38kg\;ha^{-1}$) compared to in CF plot($113kg\;ha^{-1}$). The BSF plots were increased plant height, leaf number, leaf sheath diameter, bulb diameter and height compared to CF plot. The total yields of garlic were more increased 14~19% because of high large bulb rate, commercial yields in 70, 100% BSF plots compared to in CF plot($102.9Mg\;ha^{-1}$). It was found that 70% band spotty fertilization was more effective as fertilization method to reduce both environmental pollution and chemical nitrogen fertilizer in plastic film mulching cultivation.

Andic Properties of Major Soils in Cheju Island -III. Conditions for Formation of Allophane (제주도(濟州島) 대표토양(代表土壤)의 Andic 특성(特性)에 관한 연구(硏究) -III. Allophane 생성조건(生成條件))

  • Song, Kwan-Cheol;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The conditions for formation of allophane in volcanic ash soils in Cheju Island were investigated. Soils of toposequence distributed along the sourthern slope of Mt. Halla, and the major soil groups such as dark brown soils, very dark brown soils, black soils, and brown forest soils were colleted and analyzed for Al, Fe and Si extracted with solutions of pyrophosphate and oxalate. Mean annual temperature decreased $0.8^{\circ}C$ and mean annual precipitation increased 110mm with increase elevation of 100m. Organic carbon content increased and soil pH decreased with elevation, and the formation of allophane in soils formed a climosequence. Dark brown soils widely distributed in the northern and western coastal areas, where the mean annual precipitation ranged 1,240~1,420mm and the evaporation ranged 1,290~1,320mm, contained only small amounts of allophane and Al-humus complexes. For other soils, organic carbon content, pyrophosphate extractable Al, and $Al_p/Al_o$ were inversely correlated with $pH(CaCl_2)$. Allophane content showed close relationships wlth $pH(CaCl_2)$, and inverse relationships with organic carbon content and $Al_p/Al_o$.

  • PDF

Toxicity of Organic Waste-Contaminated Soil on Earthworm (Eisenia fetida) (유기성 폐기물에 의해 오염된 토양이 지렁이에게 미치는 독성)

  • Na, Young-Eun;Bang, Hae-Son;Kim, Myung-Hyun;Lee, Jeong-Taek;Ahn, Young-Joon;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • The toxicities of contaminated soils with 8 consecutive year applications of three levels (12.5, 25.0, and $50.0t\;dry\;matter\;ha^{-1}yr^{-1}$) of four organic sludge [municipal sewage sludge (MSS), industrial sewage sludge (ISS), alcohol fermentation processing sludge (AFPS) and leather processing sludge (LPS)] on earthworm (Eisenia fetida) were examined by using microcosm container in the laboratory. Results were compared with those of pig manure compost (PMC) treated soil. In tests with three treatment levels (12.5, 25.0, and 50.0 t per plot), ISS treated soil showed higher contents of Cu (18.9~26.2 fold), Cr (7.7~34.7 fold), and Ni (14.8~18.8 fold) at 8 years post treatment, than PMC treated soil. LPS treated soil showed higher contents of Cr (35.7~268.0 fold) and Ni (4.5~7.6 fold) than PMC treated soil. There were no great differences in heavy metal contents among MSS, AFPS, and PMC treated soils. In these contaminated soils, earthworm mortalities of MSS and AFPS treated soils at 8 weeks post-exposure were similar to those of PMC treated soil regardless of each treatment level. Toxic effect (26.7~96.7 mortality) on the ISS and LPS treated soils was significantly higher than one of PMC treated soil, with an exception of LPS soil treated with 25.0 t per plot. At 16 weeks post-exposure, earthworm mortalities of AFPS' 12.5 and 25.0 t treated soils were similar to those of PMC treated soil. Toxic effect (53.3~100 mortality) on the 12.5, 25.0, and 50.0 t treated soils of MSS, ISS and LPS, and AFPS' 50.0 t treated soils was significantly higher than those of PMC treated soil. The data suggested that the 12.5, 25.0, and 50.0 t of MSS, ISS and LPS, and AFPS' 50.0 t treated soils were evaluated to have toxicity on earthworm.

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium (피혁폐기물(皮革廢棄物)인 Shaving scraps으로 부터 가수분해(加水分解) 단백질(蛋白質)의 제조(製造) 및 특성(特性))

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.47-56
    • /
    • 1997
  • To examine of possibility protein recycling of shaving scraps contained chrome generated from manufacturing process of leather, the characteristics of hydrolyzed protein that differently treated with MgO as alkaline agent were investigated. In alkaline hydrolysis of saving scraps treated with MgO, MgO had to be treated over 5.0% to maintain over pH 8.0 that is insoluble of chrome. Under the condition of alkaline treated with MgO, the solubility of chrome is low with about 60%. The average molecular weight of hydrolyzed proteins from shaving scraps treated with MgO was about 80~100 KD. The amino acid contents of that were largely collagen proteins such as glycine, alanine and proline, and acidic amino acids such as aspartic acid and glutatamic acid. The contents of Mg, Ca and Na in hydrolyzed protein were too much as liquid fertilizer, and chrome contents was 30~40 ppm that largely decreased in comparing with raw materials (40,000~42,000 ppm).

  • PDF

Effect of mixed sowing treatment of green manure crops on the change of soil nitrogen amount and yield production of corn

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Kim, Chung Guk;Lee, Jae Un;Kwon, Young Up
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.318-318
    • /
    • 2017
  • This study was conducted to find optimum mixed sowing ratio of green manure crops to reduce the use of chemical fertilizer as well as to increase the crop yield potential which will foster the utilization of green manure crops in the upland field in view of environment friendly agriculture. According to the study, the mixed ratio, 50:50, of hairy vetch and green barley showed highest nitrogen production yield in the soil due to the relatively higher organic nitrogen supply from the hairy vetch plant as well as nitrogen fixation from the air rather than other mixed ratio. In the 50:50 mixed ratio of hairy vetch and green barely total nitrogen amount in the soil showed 17.2kg per 10a, but in the other treatment ratio such as 75:25, 25:75. total nitrogen fixation amount were 16.7, 16.9 respectively. We also conducted the experiment to compare the effect of the mixed sowing treatment of green manure crops on the production of corn cultivated as a succeeding plant of hairy vetch. According to the result, the mixed ratio, 50:50, of hairy vetch and green barley treatment showed highest yield potential of corn as 153kg per 10a in seed weight which is due to the relatively higher organic nitrogen supply from the hairy vetch plant as well as nitrogen fixation from the air rather than other mixed ratio. In the mixed sowing treatment of hairy vetch 100 and barley 0 ratio, the corn production showed 148kg per 10a which is 5kg lower than that of hairy vetch 50 and barley 50 ratio, but showed statistically no difference between those two treatment. Otherwise, different treatments, such as hairy vetch 75 and barley 25, 25 and 75, 0 and 100 showed statistically different each other. Therefore, it was concluded that green manure crops, such as hairy vetch, green barley and rye were very effective crops to increase the soil fertility and gave the positive effect to the crops to give vegetative and propagative growth condition and, in turn, increased the yield potential. We have to make policy to enhance the utility of green manure crops in the upland crops as well as faddy field for the soil fertility and crop yield production which will guarantee prominent quality of environment friendly agriculture products.

  • PDF

Characteristics of Nutrient Release of Biochar Pellets through Soil Column during Rice Cultivation (토양 Column을 이용한 벼 재배 시 바이오차 팰렛의 양분용출 특성)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.63-70
    • /
    • 2018
  • This experiment was conducted to investigate nutrient leaching and mobility through soil column for application of biochar pellet during rice cultivation. For nutrient leaching through soil column experiment, it was also consisted with four treatments as control, 100% of pig manure compost pellet (PMCP), biochar pellet (pig manure compost:biochar, 6:4)(BP), and slow release fertilizer (SRF). For experimental results, it was observed that $NH_4-N$ concentration in the leachate was gradually decreased at pick of 35 days and $NO_3-N$ concentration was highest from 60 to 98 days after transplanting. $PO_4-P$ concentration in the leachate was shown to be lowest in the PMCP and BP. K concentration in the leachate was highest in the control, but lowest in SRF. For mobility of nutrient in soil depths, it shown that $NH_4-N$ concentrations were highest from 40 to 60cm and did not significantly different among treatments except the control. It was observed that the deeper depth, the higher concentration for $NH_4-N$ concentrations, but for $PO_4-P$ concentrations the deeper depth, the lower concentration. And also $PO_4-P$ concentration was highest in the control. For K mobility in soil, its pattern was appeared to be approximately same between the control and PMCP, and between BP and SRF. Therefore, it might be potential to be applied biochar pellet to reduce mobility of plant nutrients for rice cultivation.