• Title/Summary/Keyword: Organic Contaminants

Search Result 384, Processing Time 0.023 seconds

Utilization of air bubble device to improve removal Ulva linza and cleaning effects from Pyropia nets (김 양식망의 파래류 제거 및 세척 효과 증대를 위한 공기방울처리장치의 활용)

  • Hak-Jeung Lee;Young Hee Kim;Ji Yeon Nam;Chan Song Kim;Jin suk Heo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.706-711
    • /
    • 2023
  • At Pyropia farms, organic acid treatments have enhanced productivity and quality by removing pest algae (such as Ulva spp. and diatoms) and reducing the occurrence of diseases. Ulva spp. attaches to the Pyropia nets competing for inorganic nutrients & space and diminishing productivity. Additionally, the presence of attached contaminants (such as diatoms and middy particles) on the Pyropia nets negatively affects the quality of Pyropia. This study investigated the effects of removing Ulva linza and washing the Pyropia yezoensis nets using an activating treatment agent (organic acid and highly saline solution) with an air bubble device. The results of measuring the dead cell ratios after treatment under different conditions showed that the dead cell ratio of U. linza did not significantly increase when the air bubble device combined the activating treatment agent with the activating treatment agent alone. When washing the P. yezoensis nets, the air bubble device was about 19-37% more effective than the activating treatment agent alone. The findings of this study suggest that the air bubble device enhances the efficacy of the activating treatment agent, resulting in the effective cleaning of the Pyropia nets.

Comparison of Passive Diffusional Organic Vapor Samplers with Charcoal Tubes for the Measurement of Mixed Organic Solvents (확산형 포집기와 활성탄관을 이용한 공기중 혼합 유기용제 측정에 관한 연구)

  • Ahn, Kyu-Dong;Yeon, You-Yong;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1994
  • Diffusional sampling devices offer many advantages for measuring concentration levels of industrial contaminants than the conventional pump and charcoal tubes because they are lightweight, require no power, pump or tubing. This study designed to evaluate and compare the sampling performance of passive sampler to charcoal tube from mixed organic solvent workplace with 181 organic solvent using workers working in different concentration of organic solvents. All study workers kept both devices in their breathing zone simultaneuosly in the workplaces, and the sampling analytical results were compared with those of charcoal tube. The results obtained are as follows: 1. The concentrations of toluene and xylene measured by passive sampler were slightly higher than those of charcoal tube, but there were no significant statistical differences between two methods. 2. The concentrations of MEK and cyclo-hexanone measured by passive sampler in low exposure workplace (below 0.20 of MEK TLV levels and 0.1 of cyclo-hexanone TLV levels) were about 2 times higher than that of charcoal tube sampling. While, absorption efficiency of passive sampler was reduced according to increasing concentration measurements of MEK and cyclo-hexanone in air. 3. The ratios of concentrations of toluene, xylene, MEK and cyc1o-hexanone measured by passive sampler over those measured by charcoal tube were 1.11, 1.07, 1.63 and 3.65 respectively. 4. The percentages of concentration of passive samplers within 0.75 and 1.25 of charcoal tube value as a reference value of 1.0 were 57% in toluene, 74% in xylene, 34% in MEK and 32% in cyclo-hexanone respectively. 5. The correlation coefficients of toluene, xylene, MEK and cyclo-hexanone between passive sampler and charcoal tube sampler were 0.963, 0.957, 0.943 and 0.562 with statistical significance.

  • PDF

Bioassays of Polycyclic Aromatic Hydrocarbons using CYP1A1-luciferase Reporter Gene Expression System in Human Breast Cancer MCF-7 Cells

  • Kim, Ja-Y.;Sheen, Yhun-Y.
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2003
  • Biological activities of PAHs are not known although PAHs are considered as carcinogens. Recent industrial society has human widely exposed to PAHs (polynuclear aromatic hydrocarbons) that are comming from the incomplete combustion of organic material as wider spread environmental contaminants. Our laboratory have been studied the effect of PAHs in the human breast cancer MCF-7 cells. In this study, we examined the human breast cancer MCF-7 cells as a new system to evaluate bioactivity of PAHs. We have selected 13 PAHs to examine bioassay using CYP1A1-luciferase reporter gene expression system where CYP1A1 1.6 Kb 5flanking region DNA was cloned in front of luciferase reporter gene and this plasmid was transfected into MCF-7 cells transiently. This cells then used for the study to observe the effect of PAHs. We demonstrated that PAHs induced the CYP1A1 promoter, CYP1A1 mRNA and 7-ethoxyresolufin O-deethylase (EROD) activities in a concentration-dependant manner. None of PAHs that we have tested showed stronger stimulatory effect on CYP1 gene expression than TCDD. Benz(a)anthracene and benzo(b)fluoranthene were weak responders to CYP1A1 promoter activity stimulation, CYP1A1 mRNA and EROD induction in MCF-7 cells and these chemicals seemed to respond less either CYP1A1 mRNA or EROD than CYP1A1 promoter activity. Benzo(k)fluoranthene, chrysene, and dibenzo(a, h)anthracene showed strong response to CYP1A1 promoter activity stimulation, CYP1A1 mRNA increase and also EROD induction in MCF-7 cells. Results of dose response study suggested that two strong responding PAHs, such as benzo(k)fluoranthene and dibenzo(a, h)anthracene might be mediated through Aryl hydrocarbon receptors system in MCF-7 cells.

  • PDF

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

Variation of Filamentous Periphyton Chlorophyll-a in accordance with Water Velocity and Specific Surface Area of Media in Small Urban Stream (도시 소하천에서 유속, 비표면적에 따른 사상형 부착조류의 Chlorophyll-a 변화)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Lee, Saeromi;Oh, Ju Hyun;Ahn, Hosang;Song, Ho Myeon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.551-558
    • /
    • 2013
  • The feasibility of water supply as in-stream flow for Mangwall stream was analyzed in terms of water quality and cultivation periphyton using two different types of water resources (e.g., surface water and bank filtration from Han River basin) and three different types of media (e.g., tile, concrete and pebble). The concentrations of organic and inorganic contaminants from the bank filtration were lower than those from surface water by 17.5 - 55.0%. Using water samples collected from Mangwall stream, surface water, and bank filtration, chlorophyll-a, phaeopigment, and growth rate of periphyton were investigated. During 30 day incubation for each water sample, it was observed that filamentous cyanobacteria, Oscillatoriaceae, accounted for 98%, and water velocity of 5 cm/s was optimum for the in situ filamentous cyanobacteria growth. Also, it was deducted for water velocity and chl-a to have an inverse correlation. Meanwhile, the greater the specific surface area of media, the higher the concentration of chl-a. From these results, both water velocity and specific surface area of media should be considered as an combined parameter to deter the growth of filamentous cyanobacteria.

Bioassays of Polycyclic Aromatic Hydrocarbons Using cyp1a1-Luciferase Reporter Gene Expression System in Mouse Liver Hepa 1 Cells

  • Min, Kyung-N.;Kim, Ja-Y.;Sheen, Yhun-Y.
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.30-34
    • /
    • 2003
  • Recent industrial society has human widely exposed to PAHs (polynuclear aromatic hydrocarbons) that are comming from the incomplete combustion of organic material as wider spread environmental contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. Our laboratory have been studied the effect of PAHs in the mouse liver hepa 1 cells. In this study, we examined the mouse liver hepa-l cells as a new bioassay system to evaluate bioactivity of PAHs. We have selected 13 PAHs to examine bioassay using cyp1a1-luciferase reporter gene expression system where cyp1a1 1.6 Kb 5flanking region DNA was cloned in front of luciferase reporter gene and this plasmid was transfected into hepa 1 cells transiently. This cells then used for the study to observe the effect of PAHs. We demonstrated that PAHs induced the CYP1A1 promoter and 7-ethoxyresolufin O-deethylase (EROD) activities in a concentration-dependant manner. Some of PAHs showed stronger stimulatory effect on CYP1 gene expression than TCDD. Acenaphthene, anthracene, fluorine, naphthalene, pyrene, phenanthrene, carbazole were weak responders to cyp1a1 promoter activity stimulation and EROD induction in hepa 1 cells and these chemicals seemed to respond less to EROD than cyp1a1 promoter activity. Benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenzo(a,h)anthracene showed strong response to cyp1a1 promoter activity stimulation and also EROD induction in hepa 1cells. Results of dose response study suggested that four strong responding PAHs, such as benzo(a)anthracene benzo(k)fluoranthene, chrysene, and dibenzo(a, h)anthracene might be mediated through arylhydrocarbon receptor system in hepa1 cells.

  • PDF

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

The effect of PAHs on the regualtion of CYP1 gene in ZR-75-1 and MCF7 human breast cancer cells

  • Min, K.N.;Sheen, Yhun Y.;Kim, J.Y.;Cho, M.J.
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.193-193
    • /
    • 2003
  • Recent industrial society has human widely exposed to PAHs that are coming from the incomplete combustion of organic material as widespread environmental contaminants. Biological activities of PAHs are not known although PAHs are considered as carcinogens. The mechanism of action of PAHs has been studied extensively, however it is not clear how PAHs turn on CYPlAl in human breast cancer, Our laboratory have been studied the effect of PAHs in the human breast cancer cells, MCF-7. In this study, we examined the ZR-75-1, human breast cancer cells, as a new system to evaluate bioactivity of PAHs and to compare the PAHs action with that of MCF-7 cells. ZR-75-1 human breast cancer cell line is responsible to estrogen and progesterone. We have been able to establish long term culture system of this cells then used for the study to the effect of 13 different PAHs and environmental samples. We demonstrate that PAHs induced the CYP1A1 promoter and 7-ethoxyresorufin O-deethylase (EROD) activity in a concentration-dependent manner. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1A1 mRNA. Some of PAHs showed stronger stimulatory effect on CYP1 gene expression than TCDD Apparently, ZR-75-1 cells have Aryl hydrocarbon receptors (AhR), therefore it would be a good experimental tool to study the cross-talk between PAHs and steroid actions.

  • PDF

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Effect of Applied Voltage Bias on Electrochemical Migration in Eutectic SnPb Solder Alloy

  • Lee, Shin-Bok;Jung, Ja-Young;Yoo, Young-Ran;Park, Young-Bae;Kim, Young-Sik;Joo, Young-Chang
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.282-285
    • /
    • 2007
  • Smaller size and higher integration of electronic systems make narrower interconnect pitch not only in chip-level but also in package-level. Moreover electronic systems are required to operate in harsher conditions, that is, higher current / voltage, elevated temperature / humidity, and complex chemical contaminants. Under these severe circumstances, electronic components respond to applied voltages by electrochemically ionization of metals and conducting filament forms between anode and cathode across a nonmetallic medium. This phenomenon is called as the electrochemical migration. Many kinds of metal (Cu, Ag, SnPb, Sn etc) using in electronic packages are failed by ECM. Eutectic SnPb which is used in various electronic packaging structures, that is, printed circuit boards, plastic-encapsulated packages, organic display panels, and tape chip carriers, chip-on-films etc. And the material for soldering (eutectic SnPb) using in electronic package easily makes insulation failure by ECM. In real PCB system, not only metals but also many chemical species are included. And these chemical species act as resources of contamination. Model test systems were developed to characterize the migration phenomena without contamination effect. The serpentine-shape pattern was developed for analyzing relationship of applied voltage bias and failure lifetime by the temperature / humidity biased(THB) test.