• Title/Summary/Keyword: Organic Coatings

Search Result 146, Processing Time 0.028 seconds

Effect of H2 Addition on the Properties of Transparent Conducting Oxide Films Deposited by Co-sputtering of ITO and AZO (동시 스퍼터링으로 제조한 AZO-ITO 혼합박막의 증착 중 수소 혼입 영향 분석)

  • Kim, Hye-Ri;Kim, Dong-Ho;Lee, Sung-Hun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.267-271
    • /
    • 2009
  • Multicomponent transparent conducting oxide films were deposited on glass substrates at 150 by dual magnetron sputtering of AZO and ITO targets. In the case of mixing a limited amount of ITO (10W), resistivity of TCO films was significantly increased compared to the AZO film; from $3.5{\times}10^{-3}$ to $9.7{\times}10^{-3}{\Omega}{\cdot}cm$. Deterioration of the electrical conductivity is attributed to the decreases in carrier concentration and Hall mobility. Improvement of the conductivity could be obtained for the films prepared with ITO powers larger than 40 W. The lowest resistivity ($\rho$) of $7.3{\times}10^{-4}{\Omega}{\cdot}cm$ was achieved when ITO power was 100 W. Effects of $H_2$ incorporation on the electrical and optical properties of AZO-ITO films were investigated in this work. Addition of small amount of hydrogen resulted in the increase of carrier concentration and the improvement of electrical conductivity. It is apparent that the roughness of AZO-ITO films decreases dramatically after the transition of microstructure from polycrystalline to amorphous phase, which gives practical advantages such as an excellent uniformity of surface and a high etching rate. AZO-ITO films grown at sputtering ambient with hydrogen gas are expected to be applicable to optoelectronic devices such as organic light emitting diodes and flexible displays due to their sufficient electrical and structural properties.

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

Improvement of Permeation of Applied Multi-layer Encapsulation of Thin Films on Ethylene Terephthalate(PET) (고분자 기판위에 다층 구조의 박막형 보호층을 적용한 투습률 향상)

  • Kim Jong-Hwan;Han Jin-Woo;Kim Young-Hwan;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of $0.57\;g/m^2{\cdot}day$ (bare subtrate) to $1{\times}10^{-5}\;g/m^2{\cdot}day$ after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

Development of OLED Passivation Method for High efficency and life time (고효율 및 장수명의 OLED Passivation 기술 개발)

  • Han, Jin-Woo;Kim, Jong-Hwan;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.267-268
    • /
    • 2005
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. In this investigation, the SiON and Polyimide(PI) layer showed the most suitable properties. Under these conditions, the WVTR(water vapour transition rate) for PET can be reduced from level of 0.57 g/$m^2$/day (bare subtrate) to $1{\times}10^{-5}$ /$m^2$/day after application of a SiON and Polyimide layer. These results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Improvement of Permeation of applied Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위의 다층 보호막의 성능 평가)

  • Kim, Jong-Hwan;Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.60-61
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. Results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLEO) applications.

  • PDF

Electrodeposition from Non-Aqueous Electrolytes (비수용액성 전해액에서의 전기도금)

  • Brooman, Eric W.
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.169-176
    • /
    • 1991
  • The pros and cons of deposition metals, alloys and compounds from organic, inorganic and molten salt non-aqueous plating baths are discussed. Although some metals, alloys and compounds not obtainable otherwise can be deposited, few commercial processes exist. Widespread use is limited by the cost, complexity, and hazards associated with non-aqueous electrolytes, coupled with the relatively small markets for many of these coatings.

  • PDF

An Experimental Study on the Resistance to Penetration of Harmful Ions in Surface Coatings Material Containing Organic Corrosion inhibitor (유기계 방청제를 혼입한 표면피복재의 유해이온 침투저항에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • In general, carbonation and chlorine ions are the most harmful causes of deterioration of concrete structures. Recently, a method has been developed to control the corrosion of rebar in concrete containing chloride by impregnating a Surface coating material with a inhibitor. In this study, accelerated carbonation and differential thermogravimetric analysis (TG-DTA) and CASS tests were carried out to evaluate the characteristics of Surface coatings containing Organic Corrosion inhibitors which are excellent in corrosion inhibition and fix degradation causes $CO_2$ and $Cl^-$. As a result of the experiment, TG-DTA analysis and accelerated carbonation showed that $CO_2$ was directly reacted with amine derivative in concrete by the incorporation of Organic Corrosion inhibitor. In other words, $CO_2$ was immobilized and carbonation inhibition effect was confirmed. In addition, in the CASS test, the specimen coated with the Surface coating material containing the Organic Corrosion inhibitor with $Cl^-$ fixing property showed no corrosion until the 28th day and had excellent performance in preventing corrosion of a rebar by the chloride ion.

Study on the Improved Abrasion Resistance of Polycarbonate Substrate by UV-curable Organic/Inorganic Hybrid Coatings (자외선 경화형 유기/무기 복합코팅에 의한 폴리카보네이트의 내마모성 향상 연구)

  • 윤석은;우희권;김동표
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.389-398
    • /
    • 2000
  • Transparent, abrasion resistant coatings with 4~13 ${\mu}{\textrm}{m}$ thickness were prepared by spin-coating on polycarbonates with organic/inorganic hybrid solutions, followed by UV curing and heat treatment at 12$0^{\circ}C$ for 12 hours. The coating solutions were composed of inorganic phase and organic phase in 0:100, 20:80, 30:70, 50:50, 80:20 wt% ratios, respectively, mixed with photoinitiator, senaitizer and surfactant. The inorganic phase was formed by sol-gel reaction of TEOS and silane coupling agent MPTMS in 1 : 2 or 2 : 1 molar ratios, the organic phase consisted of difunctional urethane acrylate oligomeric resin, multifunctional acrylate TMPTA and HDDA in 4 : 3 : 3 wt% ratio. The coating systems were investigated by FT-IR, $^{29}$ Si-NMR spectra. In addition, TGA/DSC for thermal analysis and SEM, AFM observation for coated surface were examined. Gererally, the homogeneity of phases, the surface smoothness of coating and abrasion resistance were improved with the higher content of inorganic component. Namely, coating system with below 10 $\AA$ surface roughness and T$_{g}$ of 15$0^{\circ}C$ showed only 10% decrease in light transmittance after abrasion test, whereas uncoated polycarbonate substrate exhibited 46% decrease..

  • PDF

High performance Organic-Inorganic Hybrid Materials for Application in OLED Barrier Coating

  • Jung, Kyung-Ho;Yun, Chang-Hun;Bae, Jun-Young;Yoo, Seung-Hyup;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.806-809
    • /
    • 2009
  • Epoxy functionalized organic-inorganic hybrid materials (hybrimers) were synthesized by sol-gel reaction for application in OLED barrier coating. By using the calcium degradation method, the oxygen transition rate (OTR) and water vapor transition rate (WVTR) measured so far is $10^{-2}cc/m^2$-day for oxygen and $10^{-1}g/m^2$-day for water molecules with single hybrimer coating film, respectively. Encapsulated OLED devices have life time of 14hrs of a single hybrimer barrier coating and 29hrs of hybrimer/inorganic double barrier coatings at $25^{\circ}C$ and 60% relative humidity.

  • PDF

Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process (졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF