• Title/Summary/Keyword: Ore-forming fluid

Search Result 45, Processing Time 0.023 seconds

Geochemistry of the Hydrothermal Chimneys in the Manus Basin, Southwestern Pacific Ocean (남서태평양 Manus Basin에서 산출되는 열수 분출구에 대한 지화학적 연구)

  • 이경용;최상훈;박숭현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Manus Basin, located in the equatorial western Pacific, is a back arc basin formed by collision between the IndoAustralian and the Pacific Plates. The basin is host to numerous hydrothermal vent fields and ore deposits. The basement rocks of the Manus Basin consist primarily of dacite and basaltic andesite. Some of the minerals that form the hydrothermal chimneys that were dredged on the Manus basin include pyrite, chalcopyrite, marcasite, sphalerite and galena. The chimneys can be classified into chalcopyrite dominant Cu-rich type and sphalerite dominant Zn-rich type. The concentration of Zn shows good positive correlation with that of Sb, Cd and Ag. The content of Cu, on the other hand, positively correlates with that of Mo, Mn and Co. For samples that were taken from Zn-rich chimney, a strong positive correlation is found between Au and Zn contents. The chimney also shows enrichments of Cd, Mn and Sb. On the other hand, the samples from Cu-rich chimney exhibit strong correlation among Au, Zn and Pb, and are enriched in Mo and Co concentration. Average contents of Au in Cu-rich and Znrich chimneys were 15.9 ppm and 29.0 ppm, respectively. Because of high concentration of Au with Ag and Cu, the ore deposit have high economic potential. Homogenization temperatures and salinities of fluid inclusions in anhydrite and amorphous silica from Zn-rich chimney are estimated to be l74-220$^{\circ}$C and 2.7-3.6 equiv. wt. % NaCI, respectively. These value suggest that ore forming processes were occurred at around 200$^{\circ}$C and that the oxygen fugacity changed from 2: 10$^{-39.5}$bar to -s: 10$^{-40.8}$bar and the sulfur fugacity from -s: 10$^{-14.7}$bar to 10$^{-13.4}$bar during the process. It appears that the temperature at which the ores formed on Cu-rich chimney was higher than that on Zn-rich chimney.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Seongsan Dickite Deposits, Korea; Estimation of Ore - Forming Temperature and aNa+/aK+ Ratio of the Hydrothermal Fluid (성산딕카이트광상에서의 백악기산성마그마티즘에 관련된 열수변질작용 ; 광상형성온도의 측정 및 열수용액의 aNa+/aK+)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.259-273
    • /
    • 1992
  • The Seongsan mine is one of the largest dickite deposits in the southwestern part of the Korean Peninsula. The main constithent minerals of the ore are dickite and quartz with accessory alunite, kaolinite and sericite. The geology around the Seongsan mine consists mainly of the late Cretaceous felsic volcanic rocks. In the studied area, these rocks make a synclinal structure with an axis of E-W direction plunging to the east. Most of the felsic volcanic rocks have undergone extensive hydrothermal alteration. The hydrothermally altered rocks can be classified into the following zones: Dickite, Dickite-Quartz, Quartz, Sericite, Albite and Chlorite zones, from the center to the margin of the alteration mass. Such zonal arrangement of altered rocks suggests that the country rocks, most of which are upper part of the rhyolite and welded tuff, were altered by strongly acid hydrothermal solutions. It is reasonable to consider that initial gas and solution containing $H_2S$ and other compounds were oxidized near the surface, and formed hydrothermal sulfuric acid solutions. The mineralogical and chemical changes of the altered rocks were investigated using various methods, and chemical composition of fifty-six samples of the altered rocks were obtained by wet chemical analysis and X.R.F. methods. On the basis of these analyses, it was found that some components such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO, $K_2O$, $Na_2O$ and $TiO_2$ were mobilized considerably from the original rocks. The formation temperature of the deposits was estimated as higher than $200^{\circ}C$ from fluid inclusion study of samples taken from the Quartz zone. On the basis of the chemical composition data on rocks and minerals and estimated temperatures, the hydrothermal solutions responsible for the formation of the Seongsan dickite deposits were estimated to have the composition: $m_{K^+}=0.003$, $m_{Na^+}=0.097$, $m_{SiO_2(aq.)}=0.008$ and pH=5.0, here "m" represents the molality (mole/kg $H_2O$).

  • PDF

Mineralogical Studies on Sulfide Ore Species of the Tong Myeong Tungsten Deposits (동명중석광산산(東明重石鑛山産) 유화광물(硫化鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Lee, Pyeong-Koo;So, Chil-Sup;Kim, Se-Hyun;Yun, Seong-Taek;Kim, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.207-226
    • /
    • 1986
  • The skarn type tungsten deposits in Jechon area are developed in the contact aureole of Jurassic granodiorite and lower Paleozoic limestone beds. The Tong Myeong mine contains scheelitebearing skarns found at and near the contacts between crystalline limestone and hornfels. Although the skarns are heterogeneous, there are clear patterns in the preferred associations and nonassociations of minerals on all scales. The skarn show a zonal arrangement from limestone to hydrothermal vein as follow: wollastonite skarn, clinopyroxene skarn, clinopyroxene-garnet skarn, garnet skarn, and vesuvianite skarn. Scheelite, abundant in all skarn units except wollastonite skarn and also in quartz veins near orebodies, is everywhere strongly correlated with pyrrhotite. It is implied that it was a stable phase throughout the evolution of the zoned skarns, at least in pyrrhotite.forming environments. Deposition of scheelite was probably widely caused by increasing $a_{Ca^{2+}}$ in the fluid, resulting from associated and interrelated reactions: $FeCl_2\;aq+H_2S\;aq{\rightarrow}FeS+2H^{+}+2Cl^-$; and $CaCO_3+2H^+{\rightarrow}Ca^{+2}+H_2CO_3$. The spectral reflection powers of nine sulfide species were studied, for three mineralization stage. The shapes and characteristics of the spectral reflectivity profiles are significant in their control of other optical properties. The characteristics of the Vickers microhardness and the optical symmetry for the minerals studied are discussed. Broad radicle groupings of the sulfides can be made with regard to the reflectivity-microhardness values.

  • PDF

Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting (남한의 중생대 금-은광화작용: 지구동력학적 관점에서 재검토된 금-은광상구)

  • Choi, Seon-Gyu;Park, Sang-Joon;Kim, Sung-Won;Kim, Chang-Seong;Oh, Chang-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.567-581
    • /
    • 2006
  • The Au-Ag lode deposits in South Korea are closely associated with the Mesozoic granitoids. Namely, the Jurassic deposits formed in mesozonal environments related to deep-seated granitoids, whereas the Cretaceous ones were developed in porphyry-related environments related to subvolcanic granitoids. The time-space relationships of the Au-Ag lode deposits in South Korea are closely related to the changing plate motions during the Mesozoic. Most of the Jurassic auriferous deposits (about $165{\sim}145$ Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, strike-slip faults and caldera-related fractures together with subvolcanic activity are associated with major strike-slip faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and probably have played an important role in the formation of the Cretaceous Au-Ag lode deposits (about $110{\sim}45$ Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in South Korea probably reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma due to regional changes in tectonic environment.

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.