• Title/Summary/Keyword: Ore production data

Search Result 21, Processing Time 0.028 seconds

Development of Applications for Recording Ore Production Data and Writing Daily Work Report of Dump Truck in Mining Sites (광산 현장의 원석 생산 데이터 기록 및 덤프트럭 작업일지 작성을 위한 애플리케이션 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • This study developed applications that allows truck drivers to record ore production data using smart devices at mine sites and to create a daily work report (operation report) in a PC environment. For this, four operating mines in Korea were selected as study areas, and daily work reports used there were investigated. The information elements included in the daily work report of each mine were analyzed. Because the information to be collected for writing ore production data and format of report are different for each mine, four types of applications were developed for the study areas. Ore production data could be recorded by receiving a signal from a Bluetooth beacon and by operating the application directly by the truck driver. The collected data files are uploaded to the cloud server, and the uploaded data files can be converted into a daily work report using the developed applications in a PC environment.

A System Dynamics Model for Basic Material Price and Fare Analysis and Forecasting (시스템 시뮬레이션을 통한 원자재 가격 및 운송 운임 모델)

  • Jung, Jae-Heon
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.61-76
    • /
    • 2009
  • We try to use system dynamics to forecast the demand/supply and price, also transportation fare for iron ore. Iron ore is very important mineral resource for industrial production. The structure for this system dynamics shows non-linear pattern and we anticipated the system dynamic method will catch this non-linear reality better than the regression analysis. Our model is calibrated and tested for the past 6 year monthly data (2003-2008) and used for next 6 year monthly data(2008-2013) forecasting. The test results show that our system dynamics approach fits the real data with higher accuracy than the regression one. And we have run the simulations for scenarios made by possible future changes in demand or supply and fare related variables. This simulations imply some meaningful price and fare change patterns.

  • PDF

A Study on Extraction of K2SO4·(NH4)2SO4from the Domestic Alunite ore for Production of Potash-Ammonia Fertilyzer (國産明礬石을 原料로 한 肥料製造에 관한 硏究)

  • 손선관;고명원
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.171-175
    • /
    • 1969
  • This study wa attempted to extract the Potash-Ammonia Fertilyzer in most satisfactory yield from the Uncalcinecl Domestic Alunite ore applying an optimal reaction conditions (Ammonia water concentration and applicable reaction pressure, etc.), it was found that almost all amount of $K_2SO_4$ was extracted in the forms of $K_2SO_4·(NH_4)_2SO_4$mixture under such conditions. The experimental data to note are as follows: 1. The optimal pressure applied to the reaction was 600 to 700 Psig. 2. The optimal concentration of Ammonia water was 7 Mol/L. 3. The reaction time needed was 3 hours. 4. The extraction rate and degree were not at variance with sorts and occurrences of Alunite ore.

  • PDF

Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do (충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究))

  • Choi, Seon Gyu;Chi, Se Jung;Park, Sung Won
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

Construction of Precise Mine Geospatial Information and Ore Modeling for Smart Mining (스마트마이닝을 위한 정밀 광산공간정보 구축 및 광체 모델링)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • In mineral resource development, resource exploration is a task to find economical minerals on the surface and underground, and the success rate is low compared to the development and production stages, and it is necessary to collect a lot of data through exploration and accurately analyze the collected information. In this study, mine spatial information was constructed using a 3D (Three-dimensional) laser scanner, and accuracy evaluation was performed to obtain a maximum deviation of 0.140 m and an average of 0.095 m in the X, Y and Z directions, and the possibility of utilizing the construction of mine geospatial information through a 3D laser scanner could be presented. In addition, the ore body modeling was performed by applying the interpolation method of the ore body section using the resource exploration results. The ore body modeling result was superimposed with the modeling result of the mine geospatial information built through the 3D laser scanner to construct the ore body modeling result based on the precise mine geospatial information. The results of ore body modeling based on mine geospatial information built through research can increase the ease of data interpretation and the accuracy of the calculated data, which will greatly increase the efficiency of work related to mineral resource development and mine damage prevention in the future.

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Application of Science for Interpreting Archaeological Materials(II) - Production and Flow of Lead Glass from Mireuksa Temple - (고고자료(考古資料)의 자연과학(自然科學) 응용(應用)(II) - 익산(益山) 미륵사지(彌勒寺址) 납유리(琉璃)의 제조(製造) 및 유통(流通) -)

  • Kang, Hyung-Tae;Kim, Seong-Bae;Huh, Woo-Young;Kim, Gyu-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.241-266
    • /
    • 2003
  • Glass pieces excavated from Mireuksa Temple dated $7^{th}$ century A.D. were characterized by chemical composition, specific gravity and melting point. Lead isotope ratios of lead glasses were also compared with those of lead ore to attribute which lead ore was delivered for making lead glass. It was known that some lead glasses found in Japan were similar with those of Mireuksa Temple as comparing the data of chemical composition and lead isotope ratios. Characteristics of lead glass from Mireuksa Temple Thirty five glass pieces of Mireuksa Temple were analyzed for five oxides and found that all was lead glass system(PbO-$SiO_2$) with the range of 70~79% for PbO and 20~28% for $SiO_2$. The concentrations of oxides such as $Al_2O_3$, $Fe_2O_3$ and CuO were below 0.4%, 0.3% and 0.9%, respectively. Principal component analysis(PCA) as a statistical method was carried out to classify glasses with the similarities of chemical concentrations. The result of PCA has shown that three groups of glasses were created according to the excavation positions and two major oxides(PbO and $SiO_2$) greatly contributed to the dispersion of glasses on principal component 1(PC1) axis and trace element oxides($Al_2O_3$ and $Fe_2O_3$) for PC2 axis. Most of lead glasses were greenish by the efficacy of iron and copper oxides and some showed yellowish-green. The gravity of lead glasses was about 4.4~5.4 and estimated melting point was near $670^{\circ}C$. Lead isotope ratios of glasses were analyzed and found quite close to a lead ore from the Bupyeong mine in Gyeonggi-do. Comparison with lead glasses found in Japan Lead glasses of Mireuksa Temple were compared with those of Japan on the basis of chemical and physical data. Chemical compositions of Japanese lead glasses dated $7^{th}{\sim}8^{th}$ century A.D. were nearly similar with those of Mireuksa Temple but lead isotope ratios of those were separated into two groups. Three distribution maps of lead ores of Korea, Japan and China with lead isotope ratios were applied for lead glasses found in Japan. The result have shown that the locations of lead glasses from Fukuoka Prefecture coincided with the region of northen part of Korea and similar with those of Mireuksa Temple and lead glasses from Nara Prefecture dated $8^{th}$ century A.D. were located in the region of Japanese lead ore. This research has demonstrated that lead glasses of Mireuksa Temple conveyed to Miyajidake site, Fukuoka Prefecture around $7^{th}$ century A.D. and glass melting pots and glass beads excavated from Nara Prefecture confirmed the first use of Japanese lead ore for production of lead glasses from the end of $7^{th}$ century A.D.

3D Modeling Approaches in Estimation of Resource and Production of Musan Iron Mine, North Korea (3차원 모델링을 활용한 북한 무산광산일대의 자원량 및 생산량 추정)

  • Bae, Sungji;Yu, Jaehyung;Koh, Sang-Mo;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.391-400
    • /
    • 2015
  • Korea is a global steel producer and a major consumer while iron ore producing is very low compared to the demand. On the other hand, North Korea holds tremendous amount of iron reserves and, however, its producing rate is limited. Moreover, the data regarding mineral resources of North Korea is very limited and uncertain because of political isolation. This study estimated the amount of iron ore resource and production amount for the Musan Iron mine, the world-known open-pit mine of North Korea, using satellite imagery(Landsat MSS, ASTER) and digital maps between 1976 to 2007. As a result, the mining area of Musan mine was increased by $6.1km^2$ during the 30 years and the mining sector was estimated as $4.9km^2$. We estimated the iron resources and production amount of 0.7 and 0.2 billion metric tons, respectively based on 3D modeling and average iron ore density of Anshan formation in China. This amount indicates 8.1 million tons of annual average production and it coincides well with previous reports. We expect this study would be utilized significantly on inter-Korean exchange programs by providing trustable preliminary data.

단면도를 이용한 3차원 파라메트릭 설계

  • Kim, Byung-In;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.3
    • /
    • pp.35-53
    • /
    • 1994
  • Orthographic views ore traditionally used for engineering drawings. This paper presents a methodology for 3D parametric design using orthographic views. The parametric design technique, which is used to design 2D orthographic views, is based on production rules. In the production rule-base, several view interrelation rules and over 50 geometric rules are included. An efficient algorithm is also developed to expedite the reasoning process. For 3D object construction from orthographic views, the approach known as bottom-up geometrical approach is used. The approach consists of 4 steps : 1) generation of wire-frame, 2) construction of face from wire frame, 3) formation of 3D subobjects from faces, and 4) construction of final 3D objects. Curvilinear solids as well as planar solids can be constructed. A method of converting existing 2D CAD data to parametric 3D CAD data is also presented.

  • PDF

The Changing Patterns of Demand-Supply and Role of Mineral Resources in Economic Growth during Industrialization of the Republic of Korea (한국공업화과정(韓國工業化過程)에서의 광물자원(鑛物資源)의 수급구조변화(需給構造變化)와 경제성장(經濟成長)에 있어서의 역할(役割))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.65-92
    • /
    • 1985
  • A total of 12 mineral commodities significant in domestic output, economy and/or strategy of the Republic of Korea are chosen to examine the structural changes in production and demand-supply of these minerals during the last two decades of her industrialization. These include iron and manganese ores as the raw materials for iron and steel making, copper, zinc and tungsten ores among other non-ferrous metallic minerals, limestone (cement), kaolin, talc, pyrophyllite and graphite among other non-metallic minerals, and anthracite coal as the only domestic source of fossil energy. These are reviewed historically in time-series based on the statistical data which are tabulated and graphed in terms of domestic output, export, import, apparent demand-supply, its increasing rate, and self-sufficiency rate of each commodity. The increasing rates of demand-supply (IRDS) of some more important commodities are compared with those of Gross Domestic Production (GDP) and Economic Growth Rate (EGR) to evaluate how the IRDS contributed to the GDP and EGR. The major results revealed are as follows: Among the 12 commodities, the domestic output of 8 commodities appeared to have grown with steady upward trends: they are ores of lead, zinc and tungsten, limestone (cement), kaolin, talc, pyrophyllite and anthracite coal. Two commodities, ores of iron and copper, continued with unchanging or slightly declining trends and varied fluctuations, in spite of their cardinal importance to the heavy industry and strategy of Korea. The remaining two, graphite and manganese ore, have gradualy declined in domestic output in which the former has still enough resource potential but the latter has not and virtually ceased its domestic output. Trade patterns for mineral commodities in the Republic of Korea during the last two decades have changed greatly, being marked by a shift from mineral-exporting to mineral importing, mainly because of increasing consumption of mineral raw materials for industrialization rather than beceuse of decreasing output of domestic mineral commodities in quantity. In terms of trade patterns, the 12 commodities concerned in this study can be classified into the following four groups. The 1st group - ores of lead and tungsten have only been exported without imports. The 2nd group - amorphous graphite, and pyrophyllite have mainly been exported but partly been imported. The 3rd group - kaolin, talc and crystalline graphite have equally been exported and imported, but quantity of imports have rapidly been increased with time. The 4th group - ores of iron, manganese and zinc have shifted from exports to imports during the industrialization, particularly owing to the initiation of iron and steel making by the Pohang Iron and Steel Company in the middle 1970' s and the new establishment of the Onsan Zinc Refinery in the late 1970' s. All of the 12 commodities under considerations were far above 100% in self-sufficiency rate before or in the early 1960' s. Recently, however, most of them have been declined to below 100% except for those of limestone (cement) and pyrophyllite. It is particularly serious to identify that the self-sufficiency rates of the three important metallic minerals, iron, copper and manganese ores in 1982 appeared to be 5.1%, 0.5%, and 0.01%, respectively. The average self-sufficiency rate of the total domestic minerals produced in 1982 was 14.4% (in value) for that year. Mining industry appeared to be extremely high in its intermediate demand rate whereas its intermediate input rate to be quite low indicating that mineral raw materials have been exerted strong forward linkage effects upon the other industries rather than backward linkage effects. In comparing the curves of increasing rates of demand-supply of several major minerals - iron ore, manganese ore, copper ore, limestone (cement), kaolin, and anthracite coal - with those of Gross Domestic Production and Economic Growth Rate drawn on every graph, it is clearly shown that the curves of increasing rates of demand-supply comprise around 6 to 7 periods of cycles which roughly harmonious with those of the curves of GDP and EGR, except for the curve of anthracite coal of which the configuration seems to have resulted from the (artificial) government's mineral policy rather than from economic free market mechanism. The harmonic feature of these curves well suggests that the increasing rates of demand-supply of major minerals have been significantly contributed to the GDP and EGR. In addition, the wider amplitudes of the iron, manganese and copper curves than those of the limestone (cement) and kaolin curves indicate that the contribution of the former, metallic commodities, has been greater than that of the latter, non-metallic commodities.

  • PDF