• 제목/요약/키워드: Order preserving (reversing) map

검색결과 2건 처리시간 0.017초

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF