• Title/Summary/Keyword: Orchard sprayer

Search Result 30, Processing Time 0.033 seconds

Autonomous SpeedSprayer Using Fuzzy Control

  • Cho, Seong-In;Ki, No-Hoon;Lee, Jae-Hoon;Park, Chang-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.648-657
    • /
    • 1996
  • Autonomous speedsprayer operation in an orchard was conducted using a fuzzy logic controller (FLC). Orchard image analysis and signals of ultrasonic sensors were processed in real time. The speedsprayer was modified to be steered by two hydraulic cylinders. The FLC has two inputs of direction of running and distance from obstacles. Operation time of the hydraulic cylinders were inferred as output of the FLC. Field test results showed that the speedsprayer could be autonomously operated by the FLC along with the image processing and the ultrasonic sensors. The ultrasonic sensors didn't contribute to the improvement of guidance performance, but the speedsprayer could avoid trees or obstacles in emergent situations with them.

  • PDF

Exposure and Risk Assessment of Operators to Insecticide Acetamiprid during Treatment on Apple Orchard

  • Kim, Eunhye;Moon, Joon-Kwan;Lee, Hyeri;Kim, Suhee;Hwang, Yon-Jin;Kim, Byung-Joon;Lee, Jinbeum;Lee, Dong-Hyuk;Kim, Jeong-Han
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Occupational exposure and risk assessment were conducted to evaluate the safety of operators when insecticide acetamiprid was applied to apple orchard using a speed sprayer. Dermal patches, cotton gloves, socks, and masks were used to monitor the dermal exposure, and personal air pump with solid sorbent was used to measure the potential inhalation exposure. In validation to analytical methods, the limit of detection and limit of quantitation were 0.25 ng and 1 ng, respectively. Good reproducibility (coefficient variation < 4%), linearity (coefficient determination > 0.999), and recovery (85.3-118.2%) were obtained. Trapping efficiency of solid sorbent was 96.4% while breakthrough did not occur. Only hand exposure was measured on the gloves during mixing/loading to give $33-1,132{\mu}g$. Exposure amount of operator 3 among 4 workers was noticeably high. The total volumes of spray liquid for operators were $535-1,235mL{\cdot}h^{-1}$, corresponding to 0.03-0.08% of the applied spray solution. Highest contaminated parts of body were thighs, chest, and lower legs. The inhalation exposure ratio to the total application amount was significantly low. However, wind seemed to affect the inhalation exposure of operator. For risk assessment, margin of safety was calculated by the application of cloth and dermal penetration rate to obtain values of much larger than 1 in all cases. Therefore, health risk of operators during treatment of acetamiprid in apple orchard could be of least possibility.

Deposit Amounts of Dithianone on Citrus leaves by Different Spray Methods (살포 방법에 의한 살균제 Dithianon의 감귤 잎 부착량 비교)

  • Jeon, Hye-Won;Hong, Su-Myeong;Hyun, Jae-Wook;Hwang, Rok-Yeon;Kwon, Hye-Young;Kim, Taek-Kyum;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to obtain efficient control effect of the pesticide, it is important to ensure uniform adhesion to the desired plant parts at the right time. Pesticide spray method (application technology) is an important factor affecting the efficacy and crops persistent expression. The aim of this study was to develop an efficient system to investigate the coating weight distribution of citrus leaves due to the difference between the nozzle and spray sprinkler system using dithianon used in citrus scab. Other An, engine type sprayer was used as the control. Speed sprayer and different sprinklers were wsed to way the deposit amounts of dithianon on citrus leaves. The test was conducted at the National Institute of Horticultural Herbal Science Citrus Research Station, located in the circle citrus Jeju Island. In order to examine whether the citrus orchard spray and the evenl on the whole, dithianon (43% flowable 1000-fold dilution) was sprayed, filter paper and leaves were analyzed by the height as top, middle, bottom. Speed sprayer the was most effective on depositing at the middle position, of the leaves. All other sprays the leaces except the dry mist sprinkler were not effective enough to deposit on the back sides. To achieve more deposits on the high position leaves, an improve ment in the nozzle and an efficient power system of sprayer were needed.

A study on the design and manufacture of die casting mold of belt pulley for spray pump (분무용 펌프 구동 벨트풀리의 다이캐스팅 금형설계 및 제작에 관한 연구)

  • Lee, Eun-jong;Choi, Kye-kwang;Kim, Sei-hwan
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • Orchard sprayers, wide area dusters and multipurpose control cars are flagship products of Hansung T&I Ltd. Spray pumps are one of the essential parts for these products. But conventional belt pulleys for spray pumps are heavy and expensive, and they bring down the quality as well as productivity of the end-products. Therefore, this study focuses on mold design for aluminum die casting belt pulley and mold manufacture.

  • PDF

Autonomous SpeedSprayer Using Machine Vision and Fuzzy Logic (II) -Real Operation- (기계시각과 퍼지논리를 이용한 스피드스프레이어의 자율주행(II) -실제 주행-)

  • 기노훈;조성인;최창현
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 1996
  • Autonomous speedsprayer operation was conducted using the developed FLC(Fuzzy Logic Controller). Orchard image and signals of ultrasonic sensors were processed in real time. The speedsprayer was modified to be steered by two hydraulic cylinders. The FLC has two inputs, direction of running and distance from obstacles. The operation time of hydraulic cylinders were inferred as output of the FLC. Field test results showed that the speedsprayer could be autonomously operated by the FLC along with the image processing and the ultrasonic sensors. The ultrasonic sensors didn't contribute to the improvement of guidance performance, but the speedsprayer could avoid trees or obstacles in emergent situations with them.

  • PDF

An Intelligent Spraying Machine Capable of Selective Spraying Corresponding to the Shape of Fruit Trees Using LiDAR (LiDAR를 활용한 과수 형상에 따라 선택적 방제가 가능한 지능형 방제기)

  • Yang, Changju;Kim, Gookhwan;Lee, Meonghun;Kim, Kyoung-Chul;Hong, Youngki;Kim, Hyunjong;Lee, Siyoung;Ryu, Hee-Suk;Kwon, Kyung-Do;Oh, Min-seok
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2020
  • Driving on irregular and inclined roads using agricultural machinery such as spraying machines or trucks in orchards causes farmer casualties associated with the overturning of agricultural machinery. In addition, the harm to agricultural workers caused by the excessive inhalation of the scattered pesticide frequently occurs during pest control processes. To address these problems, we introduced precision agricultural technology that could selectively spray pesticides only where the fruit is present by recognizing the presence or shape of the fruit in the orchard. In this paper, a 16-channel LIDAR (VLP-16) made of Velodyne was used to identify the shape of fruit trees. Solenoid valves were attached to the end parts of 12 nozzles of the orchard spraying machine for on/off control. The smart spraying machine implemented in this way was mounted on a vehicle capable of autonomous travel and performed selective control depending upon the shape of the fruit trees while traveling in the orchards. This is expected to significantly reduce the amounts of pesticides used in orchards and production costs.

Research on the Variable Rate Spraying System Based on Canopy Volume Measurement

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1131-1140
    • /
    • 2019
  • Characteristics of fruit tree canopies are important target information for adjusting the pesticide application rate in variable rate spraying in orchards. Therefore, the target detection of the canopy characteristics is very important. In this study, a canopy volume measurement method for peach trees was presented and a variable rate spraying system based on canopy volume measurement was developed using the ultrasonic sensing, one of the most effective target detection method. Ten ultrasonic sensors and two flow control units were mounted on the orchard air-assisted sprayer. The ultrasonic sensors were used to detect the canopy diameters and the flow controls were used to modify the flow rate of the nozzles in real time. Two treatments were established: a constant application rate of $300Lha^{-1}$ was set as the control treatment for the comparison with the variable rate application at a $0.095Lm^{-3}$ canopy. The tracer deposition at different parts of peach trees and the tracer losses to the ground (between rows and within rows) were analyzed in detail under constant rate and variable rate application. The results showed that there were no significant differences between two treatments in the liquid distribution and the capability to reach the inner parts of the crop canopies.

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

The Preliminary Operator Risk Assessment of High Toxicological Pesticides in Korea (고독성 농약의 국내 농작업자 위해성 평가)

  • Hong, Soon-Sung;Jeong, Mi-Hye;Park, Kyung-Hun;You, Are-Sun;Park, Yeon-Ki;Lee, Je-Bong;Kim, Chan-Sub;Shin, Jin-Sup;Park, Jae-Eup
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • This study was carried out to estimate the risk of pesticide operators who use high toxicological pesticides. The class II (highly hazardous) pesticides registered in korea were 15 products, and 11 products were spray type pesticides at orchard file in 2009. The using information based on the pesticide label and the data searched through survey of actual condition on pesticides were used for calculate the pesticide operator exposure dose. The risk quotients of these pesticides against the pesticides operator were calculated as devide pesticide exposure dose by reference dose which were presented by EFSA (European Food Safety Authority), JMPR (Joint FAO Meeting on Pesticide Residues), and US/EPA (United States Environmental Protection Agency). Omethoate showed the highest risk quotient and the values were 338 and 75 when the operator spray using speed sprayer and motor sprayer respectively. Risk quotients of all class II pesticide were above 1. This result means that the risk potential of these pesticides are very high.

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).