• Title/Summary/Keyword: Orbiting scroll

Search Result 41, Processing Time 0.022 seconds

Dynamic Behaviour of a Radial Compliant Crank Mechanism Used in Scroll Compressor (스크롤 압축기에 적용된 가변반경 크랭크 기구의 동적 거동에 관한 연구)

  • 김태종;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.8-19
    • /
    • 1996
  • Scroll compressor using a slide bushing type radial compliant crank mechanism is modelled, and it's dynamic behaviour characteristics are analyzed. Sealing forces generated in the flank surfaces of the orbiting scroll depending on the distance, e, from slide bushing center to crank pin center are calculated. From the stable condition of orbiting scroll for the moment equilibrium in tangential direction, the range of e is determined as 0$r_o$. Transient response of a crankshaft supported by two journal bearings is investigated, considering applied load, moment, and unbalance force by eccentric mass. As a result, conical whirl mode with circular orbits are obtained. The characteristics of journal orbits and frictional losses are calculated with a variation of viscosity and bearing clearance.

Dynamic Behavior Analysis of Scroll Compressor (스크롤 압축기의 동적 거동 해석)

  • Chun, Seung-woo;Park, Sung-jun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • These conventional reciprocating compressor(reciprocating type compressor) or household refrigerators and car air conditioning rotary compressor, rotary compressor, has been used by a reciprocating piston torque variability and the deepening of the vibration problem, the suction valve and discharge valvein this study, as a result of the losses in the current use of the scroll compressor, scroll compressor with the features of low noise, high efficiency, small size, light weight, has increased. fixed Scroll(fixed scroll) scroll compressor with orbiting scroll (rotating scroll) vibration experiments were performed in order to identify the vibration characteristics of the structure of the Analysis was performed using the commercial finite element program(ANSYS) for the sake of comparison, the experimental results using a finite element model of research about the natural vibration characteristics due to a material change.

  • PDF

Coupled Thermal-Stress Analysis of Scrolls in Automotive Scroll Compressor (전동식 Scroll Compressor의 Scroll 열변형 해석)

  • Lee, Hyoung-wook;Kim, Jeongbae;Lee, Geun-An;Lee, Jong Sup;Lee, Young-Seon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2012
  • A scroll compressor used in the air conditioning in automobile consists of the fixed scroll and the orbiting scroll. Temperature gradient in the scroll compressor during the operation induces the thermal expansion of two scrolls. Therefore, the gap between scrolls in the initial stage is regarded as an important variable in structural design of the scroll compressor. The coupled thermal-stress analysis was carried out for the scrolls of a scroll compressor. The temperatures of major points of two scrolls in the steady states were referred by the literature of C. Lin. The sequentially coupled thermal-stress analysis is utilized to the heat transfer analysis and the thermal expansion analysis. In the thermal expansion analysis, the contact analysis was considered between the fixed and the orbiting scrolls in order to obtain the penetration distance and the contact pressure between two scrolls. The range of deformation was from 44 to $76{\mu}m$ according to the height of the scroll. The maximum penetration distance of $60{\mu}m$ occurred at the top surface of the fixed scroll in the center of the scroll parts.

  • PDF

Numerical Study on the Dynamic Behaviour of a Crank Shaft Used in Scroll Compressor (스크롤 압축기의 크랭크축의 동적거동에 관한 수치적 연구)

  • 김태종;안영재;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1940-1950
    • /
    • 1993
  • The theoretical investigation is done on the dynamic behavior of a crank shaft used in a scroll compressor. The compression performance of a scroll compressor is directly influenced by the sealing characteristics between fixed and orbiting scrolls, which is related with the dynamic behavior of a scroll compressor. Analyzing the constrained power transmitting system is came to be of importance, accordingly. The equations of motion and interacting forces of a scroll compressor are derived and solved numerically in this paper. The locus of the crank shaft is also obtained by employing the reaction force caused by the oil film of journal bearing. The results show that the crank shaft of a scroll compressor has considerably stable rotating locus.

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

Conceptual design of scroll expander-compressor for Stirling engine (스크롤 방식 스털링 엔진용 스크롤 압축기-팽창기 개념 설계)

  • Kim, Woo-Young;Kim, Hyun-Jin;Kim, Young-Min;Lee, Sang-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.397-403
    • /
    • 2007
  • In this paper, conceptual design of scroll expander-compressor for Stirling engine utilizing solar energy as heat source has been carried out. Orbiting scroll member was designed to have a double-sided structure to reduce the overall scroll size and to cancel out the axial forces on the orbiting scroll base plate. Diameter of designed scroll base plate was about 251 mm for the expander, and it was about 218 mm for the compressor. With operating condition such as temperature range of $400^{\circ}C/20^{\circ}C$, pressure range of 6 MPa/2 MPa, and shaft speed of 2700 rpm, the shaft output of the designed scroll expander was calculated to be 49.8 kW, while input power for the scroll compressor was 38.6 kW, yielding 11.2 kW for the output power of the Stirling engine. Overall efficiencies of the scroll expander and compressor were 93.73% and 92.87%, respectively.

  • PDF

Applicability of Scroll Expander-compressor for Stirling Engine (스털링 엔진에 대한 스크롤 팽창기 : 압축기의 적용성)

  • Kim, Seong-Jun;Kim, Hyun-Jin;Kim, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2009
  • Conceptual design of scroll expander and scroll compressor for 10kW-class Stirling engine utilizing solar energy as heat source has been carried out to estimate the applicability of scroll mechanism for Stirling cycle. CO2 was chosen as working fluid, since it has lower expansion index and higher density among probably usable gases. Gas temperature at the expander inlet was set at $700^{\circ}C$, and that at the compressor inlet was at $40^{\circ}C$. System efficiency reached maximum at the pressure ratio of about 2.5, and the peak efficiency increased with increasing high side pressure. Due to safety concern, the pressure condition of 6 MPa/2.5 MPa was chosen as design condition. Orbiting scroll members for the expander and compressor were designed to have double-sided structure in order to reduce the overall scroll size and to cancel out the axial gas forces acting on the orbiting scroll base plate. By parametric study on the scroll profile, smaller possible size for the scroll members was obtained. With the shaft speed of 3600rpm, the shaft output of the designed scroll expander was calculated to be 45.4kW, while input power for the scroll compressor was 34.5kW, yielding 10.9kW for the output power of the Stirling engine. System efficiency was estimated to be about 7.3%, and overall efficiencies of the scroll expander and compressor were around 84.1% and 88.3%, respectively.

Optimal Design of Thrust Surface Oil Groove of a High Side Scroll Compressor (고압식 스크롤 압축기 스러스트 오일 그루브 최적 설계)

  • Kim, Hyun-Jin;No, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.127-133
    • /
    • 2017
  • Performance analysis has been carried out on a high side scroll compressor that had a fixed scroll equipped with a circular oil groove on its thrust surface. Oil was supplied to the oil groove through an intermittent opening from a high pressure oil reservoir formed inside the orbiting scroll hub. Oil in the groove was then delivered to both suction and back pressure chambers by pressure differentials and viscous pumping action of the orbiting scroll base plate. Mathematical modeling of this oil groove system was incorporated into a main compressor performance simulation program for an optimum oil groove design. The study findings were as follows. Pressure in the oil groove can be controlled by changing its configuration and the oil passage area. With an enlarged oil passage, the pressure in the oil groove heightens due to an increased flow rate, but the pressure elevation in the back pressure chamber is small, resulting in reduced friction loss at the thrust surface between the two scrolls. On the other hand, by increasing the oil passage area, the oil content in the refrigerant flow increases. Considering all these factors, the energy efficiency ratio could be improved by about 3.6% under the ARI condition by an optimal oil groove design.

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF