• Title/Summary/Keyword: Orbital wall fracture

Search Result 81, Processing Time 0.035 seconds

Orbital wall restoring surgery with primary orbital wall fragments in blowout fracture

  • Kang, Dong Hee
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • Most orbital surgeons believe that it's difficult to restore the primary orbital wall to its previous position and that the orbital wall is so thin that cannot be firmly its primary position. Therefore, orbital wall fractures generally have been reconstructed by replacing the bony defect with a synthetic implant. Although synthetic implants have sufficient strength to maintain their shape and position in the orbital cavity, replacement surgery has some drawbacks due to the residual permanent implants. In previous studies, the author has reported an orbital wall restoring technique in which the primary orbital wall fragment was restored to its prior position through a combination of the transorbital and transantral approaches. Simple straight and curved elevators were introduced transnasally to restore the orbital wall and to maintain temporary extraorbital support in the maxillary and ethmoid sinus. A transconjunctival approach provided sufficient space for implant insertion, while the transnasal approach enabled restoration of the herniated soft tissue back into the orbit. Fracture defect was reduced by restoring the primary orbital wall fragment to its primary position, making it possible to use relatively small size implant, furthermore, extraorbital support from both sinuses decreased the incidence of implant displacement. The author could recreate a natural shape of the orbit with the patient's own orbital bone fragments with this dual approach and effectively restored the orbital volume and shape. This procedure has the advantages for retrieving the orbital contents and restoring the primary orbital wall to its prior position.

Reconstruction of Medial Orbital Wall Fractures without Subperiosteal Dissection: The "Push-Out" Technique

  • Kim, Yong-Ha;Lee, Jin Ho;Park, Youngsoo;Kim, Sung-Eun;Chung, Kyu-Jin;Lee, Jun-Ho;Kim, Tae Gon
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.496-501
    • /
    • 2017
  • Background Various surgical methods for repairing medial orbital wall fractures have been introduced. The conventional technique requires total separation of the displaced orbital bones from the orbital soft tissues. However, subperiosteal dissection around the fracture can cause additional damage. The aim of the present study is to introduce a method of reconstructing medial orbital wall fractures without subperiosteal dissection named the "push-out" technique. Methods Six patients with post-traumatic enophthalmos resulting from an old medial orbital wall fracture and 10 patients with an acute medial orbital wall fracture were included. All were treated with the push-out technique. Postoperative computed tomography (CT) was performed to assess the correct positioning of the implants. The Hertel scale and a comparison between preoperative and postoperative orbital volume were used to assess the surgical results. Results Restoration of the normal orbital cavity shape was confirmed by examining the postoperative CT scans. In the old fracture group, the median orbital volume of the fractured side was $29.22cm^3$ preoperatively, and significantly improved postoperatively to a value of $25.13cm^3$. In the acute fracture group, the median orbital volume of the fractured side was $28.73cm^3$ preoperatively, and significantly improved postoperatively to a value of $24.90cm^3$. Differences on the Hertel scale also improved, from 2.13 mm preoperatively to 0.25 mm postoperatively in the old fracture group and from 1.67 mm preoperatively to 0.33 mm postoperatively in the acute fracture group. Conclusions The push-out technique can be considered a good alternative choice for old medial orbital wall fractures with posttraumatic enophthalmos, acute medial orbital wall fractures including large fractured bone segments, and single-hinged greenstick fractures.

Degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue (안와벽 골절 면적과 이탈된 안와내 조직의 부피에 따른 안구함몰 정도)

  • Jang, Hak-Sun;Leem, Dae-Ho;Baek, Jin-A;Shin, Hyo-Keun;Ko, Seung-O
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.205-213
    • /
    • 2011
  • Introduction: The enlargement and deformation of the orbit give rise to a visible enophthalmos. As a consequence, a disturbance of eye motility together with double images is likely to occur. This study examined the degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue in blowout fractures of the medial and inferior orbital wall. Materials and Methods: This study was performed on patients diagnosed with medial and inferior orbital wall fractures at the Department of Oral and maxillofacial surgery, Chonbuk National University Hospital from 2007 to 2009. The patients' age, gender, etiology of fracture and degree of enophthalmos were investigated. The changes in the degree of enophthalomos, diplopia and ocular motility restriction after operation were examined. Results: The degree of enophthalomos increased with increasing extent of orbital wall fracture and volume of herniated orbital tissue. Conclusion: Whether to perform the operation is decided after measuring the extent of the orbital wall fracture and volume of herniated orbital tissue using computed tomography (CT), time for the decision of operation can be shortened. This can cause a decrease in the complications of orbital wall fractures.

Orbital wall restoration with primary bone fragments in complex orbital fractures: A preliminary study

  • Jung, Joo Sung;Kang, Dong Hee;Lim, Nam Kyu;Kim, Hyonsurk
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2020
  • Background: We have reported orbital wall restoration surgery with primary orbital wall fragment in pure blowout fractures using a combination of transorbital and transnasal approach in pure blow out fractures. However, this method was thought to be difficult to use for complex orbital wall fractures, since the sharp screw tip that fixate the maxillary wall increases the risk of balloon ruptures. In this study, we reviewed 23 cases of complex orbital fractures that underwent orbital wall restoration surgery with primary orbital wall fragment and evaluated the result. Methods: A retrospective review was conducted of 23 patients with complex orbital fracture who underwent orbital restoration surgery with primary orbital wall fragments between 2012 and 2019. The patients underwent orbital wall restoration surgery with primary orbital wall fragment with temporary balloon support. The surgical results were evaluated by the Naugle scale and a comparison of preoperative and postoperative orbital volume ratio. Complex fracture type, type of screw used for fixation and complications such as balloon rupture were also investigated. Results: There were 23 patients with complex orbital fracture that used transnasal balloon technique for restoration. 17 cases had a successful outcome with no complications, three patients had postoperative balloon rupture, two patients had soft-tissue infection, and one patient had balloon malposition. Conclusion: The orbital wall restoration technique with temporary balloon support can produce favorable results when done correctly even in complex orbital wall fracture. Seventeen cases had favorable results, six cases had postoperative complications thus additional procedure seems necessary to complement this method.

Two Portal Approach(Endoscopic Transnasal and Subciliary) in Medial Orbital Wall Fracture (내시경을 이용한 비강내 접근법과 속눈썹밑 절개를 동시에 이용한 안와내벽 재건술)

  • Chang, Hyun;Dhong, Eun-Sang;Won, Chang-Hoon;Yoon, Eul-Sik
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.552-556
    • /
    • 2006
  • Purpose: As the use of computed tomographic scanning spread, the diagnosis of blow-out fractures of the medial orbital wall increased. Conventionally, the surgery of blow-out fractures in medial orbital wall was performed by various approaches with external incision or endoscopic approach. Although the field of orbital surgery has progressed significantly during the last decade, accurate realignment and replacement of component is difficult due to lack of visualization of the fracture site, blind dissection of the orbital wall, and difficulty in insertion of implant. In order to overcome these shortcomings, we explored the use of endoscopic transnasal approach together with subciliary approach. Methods: The entrapped periorbital tissues in the ethmoid sinus were completely reduced endoscopically, and the bone defect of medial orbital wall was reconstructed with $Medpor^{(R)}$ insertion via subciliary approach. This technique was applied to 13 patients who had medial orbital wall fracture. Results: The patients were followed-up for 3 to 24 months with an average of 9 months. The postoperative courses were satisfactory in all cases. Conclusion: The conjunction of endoscopic transnasal and subciliary approach technique seems to produce good results in medial orbital wall fracture.

THE TRANSCARUNCULAR APPROACH OF THE MEDIAL ORBITAL WALL FRACTURE (내측 안와벽 골절 처치: Transcaruncular approach)

  • Kim, Hyun-Chul;Choi, Ju-Seok;Baek, Jin-A;Shin, Hyo-Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.1
    • /
    • pp.63-70
    • /
    • 2007
  • The occurrence of medial orbital wall fracture is isolated or combined with other facial bone fracture. There are many complications, for example, diplopia, enophthalmos, limitation of eye movement, visual activity depression and blindness. Because of these complications, the accurate diagnosis and treatment of medial orbital wall fracture is very important. We have reconstructed medial orbital walls with transcaruncular approach and obtained good results in patients with medial orbital wall fracture.

Inlay Grafting for the Treatment of the Posterior Comminuted Fracture of Medial Orbital Wall (Inlay법을 이용한 안와 내벽 골절의 교정)

  • Lim, Jong-Hyo;Kim, Tae-Gon;Lee, Jun-Ho;Kim, Yong-Ha
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Purpose: For blowout fracture of the medial orbital wall, the goals of treatment are complete reduction of the herniated soft tissue and anatomic reconstruction of the wall without surgical complications. Surgeons frequently worry about damage to the optic nerve from the dissection, when the part over the posterior ethmoidal foramen was fractured. The authors performed small incision and inlay grafting for reconstruction of medial orbital wall fracture. Methods: Between January 2007 and April 2008, 15 out of 32 patients were included in an analysing the outcome of corrected medial orbital wall fracture. In 15 patients of posterior comminuted fracture of medial orbital wall, insertion of porous polyethylene($Medpor^{(R)}$ channel implant, Porex, USA) to ethmoidal sinus was performed in multiple layer, through the transconjunctival approach (inlay grafting). Results: In all cases, the orbital bone volume was reconstructed in its normal anatomical position. The associated ocular problems disappeared except for mild enophthalmos in 2 patients and there were no surgical complications associated with inlay grafting. Conclusion: The advantage of inlay grafting include anatomical reconstruction of the orbital wall; the avoidance of optic nerve injury; the simplicity of the procedure; and consequently, the absence of surgery-related complications. This technique is presented as one of the preferred treatments for posterior comminuted fracture of medial orbital wall.

Classification of the Lateral Orbital Wall Fracture and Its Clinical Significance (안와 외벽 골절의 분류와 임상적 의의)

  • Cho, Pil Dong;Kim, Hyung Suk;Shin, Keuk Shun
    • Archives of Plastic Surgery
    • /
    • v.35 no.5
    • /
    • pp.553-559
    • /
    • 2008
  • Purpose: The lateral orbital wall fractures have been previously classified by some authors. As there are some limitations in applying in their own classifications, we hope to present a refined classification system of the lateral orbital wall fracture and to identify the correlation between the specific type of the fracture and clinical diagnosis. Methods: The facial bone CT scans and medical records of 78 patients with the lateral orbital wall fractures were reviewed in a retrospective manner. The classification is based on the CT scan. In type I, the fracture and its segments are away from the lateral rectus muscle and in type II, they are next to or slightly pushing the muscle in axial CT scan. In type III, the fracture segments compress and displace the longitudinal axis of the muscle or the optic nerve in axial view of CT scan. Type IV fracture includes multiple fractures found around the orbital apex or optic canal in coronal view of CT scans of the type I and type II fractures. Results: The most common fracture pattern was type I(43.6%), followed by type IV(29.5%), type II(20.5%), and type III(6.4%). As diplopia and restriction of extraocular muscles were found in type I and II fractures, severe ophthalmic complications such as superior orbital fissure syndrome, orbital apex syndrome, and traumatic optic neuropathy were found in type III and IV fractures almost exclusively. Conclusion: We propose an easy classification system of the lateral orbital wall fracture which correlates closely with ophthalmic complications and may help to make further treatment plan. In Type III and IV fractures, severe ophthalmic complications may ensue in higher rates, so early diagnosis and treatment should be performed.

The Inferior Orbital Wall Reconstruction by Titanium Micro-mesh Remodeling (Titanium Micro-mesh의 개형을 통한 하벽부 안와골절의 재건)

  • Kim, Han Koo;Choi, Min Seok;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The inferior orbital wall is the most vulnerable to injury and inadequate reconstruction of inferior orbital fracture result in postoperative complications include enophthalmos, ocular dystopia and diplopia. Although the anatomical reconstruction of the inferior orbital wall is necessary to prevent these complications, the complexity of inferior orbital wall makes it difficult. We fabricated and remodeled the titanium micro-mesh plate for the anatomical reconstruction of inferior orbital wall. Methods: Twenty-nine patients with inferior orbital wall blow-out fracture were operated and twelve of them presented large extensive fracture. We intraoperatively fabricated and remodeled the Titanium-micro mesh to angulated lazy S shape similar to contralateral uninjured orbit. The preoperative and postoperative facial CT scan verified the 3-dimensional and anatomical reconstruction of the fractures. The mean follow-up was 19.7 months and postoperative complications was evaluated. Results: All cases showed the exact anatomical reconstruction, but there were minor complications in two cases. one patient had postoperative diplopia until 3months after surgery and the other patient had persistent enophthalmos (2 mm), but no further surgical correction was required. Conclusion: The comprehensive understanding of orbital convexity is the most important factor for anatomical reconstruction of inferior orbital fracture. We could prevent postoperative complications after inferior orbital wall reconstruction by intraoperative fabrication and anatomical remodeling of Titanium micro-mesh.

Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture

  • Heo, Jae Jin;Chong, Ji-Hun;Han, Jeong Joon;Jung, Seunggon;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.42.1-42.5
    • /
    • 2018
  • Background: Fractures of the orbital wall are mainly caused by traffic accidents, assaults, and falls and generally occur in men aged between 20 and 40 years. Complications that may occur after an orbital fracture include diplopia and decreased visual acuity due to changes in orbital volume, ocular depression due to changes in orbital floor height, and exophthalmos. If surgery is delayed too long, tissue adhesion will occur, making it difficult to improve ophthalmologic symptoms. Thus, early diagnosis and treatment are important. Fractures of the superior orbital wall are often accompanied by skull fractures. Most of these patients are unable to perform an early ocular evaluation due to neurosurgery and treatment. These patients are more likely to show tissue adhesion, making it difficult to properly dissect the tissue for wall reconstruction during surgery. Case presentation: This report details a case of superior orbital wall reconstruction using superior orbital rim osteotomy in a patient with a superior orbital wall fracture involving severe tissue adhesion. Three months after reconstruction, there were no significant complications. Conclusion: In a patient with a superior orbital wall fracture, our procedure is helpful in securing the visual field and in delamination of the surrounding tissue.