• Title/Summary/Keyword: Orbital volume

Search Result 51, Processing Time 0.025 seconds

Quantitative Analysis of the Orbital Volume Change in Isolated Zygoma Fracture (관골 단독 골절에서 안구 용적 변화의 정량적 분석)

  • Jung, Han-Ju;Kang, Seok-Joo;Kim, Jin-Woo;Kim, Young-Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.783-790
    • /
    • 2011
  • Purpose: The zygoma (Zygomaticomaxillary) complexes make up a large portion of the orbital floor and lateral orbital walls. Zygoma fracture frequently causes the posteromedial displacement of bone fragments, and the collapse or overlapping of internal orbital walls. This process consequently can lead to the orbital volume change. The reduction of zygoma in an anterolateral direction may influence on the potential bone defect area of the internal orbital walls. Thus we performed the quantitative analysis of orbital volume change in zygoma fracture before and after operation. Methods: We conducted a retrospective study of preoperative and postoperative three-dimensional computed tomography scans in 39 patients with zygoma fractures who had not carried out orbital wall reconstruction. Orbital volume measurement was obtained through Aquarius Ver. 4.3.6 program and we compared the orbital volume change of injured orbit with that of the normal contralateral orbit. Results: The average orbital volume of normal orbit was 19.68 $cm^3$. Before the operation, the average orbital volume of injured orbit was 18.42 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.18 $cm^3$ (6.01%) on average. After operation, the average orbital volume of injured orbit was 20.81 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.17 $cm^3$ (5.92%) on average. Conclusion: There are considerable volume changes in zygoma fracture which did not accompany internal orbital wall fracture before and after operation. Our study reflects the change of bony frame, also that of all parts of the orbital wall, in addition to the bony defect area of orbital floor, in an isolated zygoma fracture so that it evaluates orbital volume change more accurately. Thus, the measurement of orbital volume in isolated zygoma fractures helps predict the degree of enophthalmos and decide a surgical plan.

Orbital Volume Change Resulted from Packing in Ethmoidal Sinus for Correction of Isolated Medial Orbital Fractures (안와내벽파열골절의 내시경적 사골동내 충전에 따른 안와용적 변화)

  • Kim, Kyoung-Hoon;Choi, Soo-Jong;Kang, Cheol-Uk;Bae, Yong-Chan;Nam, Su-Bong
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the medial orbital fractures cannot be enable to confirm the reduction degree of orbital volume without imaging modalities. We have intended through this study to make a quantative analysis of preoperative orbital volume increment and the reduction degree of that after ethmoidal sinus packing by using CT scan. Methods: In this retrospective study, 22 patients were selected to evaluate the postoperative volume reduction, who took 2 CT scans which are pre- and postoperative under the same protocol. The postoperative CT scan was carried out in about 5 days after the operation with the packing inserted into ethmoidal sinus. The length of bony defect on each section was measured by PACS program and the area of defect was calculated by summing lengths on each section multiplied by the thickness of the section. When the outline of orbit on the slice is drawn manually with a cursor, PACS program measures the area automatically. Orbital volume was calculated from the sum of the area multiplied by the section thickness. Results: The mean dimension of fractured walls was $2.86{\pm}0.99cm^2$. The mean orbital volume of the unaffected orbits was $22.89{\pm}2.15cm^3$ and that of the affected orbits was $25.62{\pm}2.82cm^3$. The mean orbital volume increment of the affected orbits was $2.73{\pm}1.13cm^3$. After surgery, the mean orbital volume of the unaffected orbits was $22.46{\pm}2.73cm^3$ and the mean orbital volume decrease on the surgical side was $2.98{\pm}1.07cm^3$. The estimated correction rate was 118.30%. Conclusion: The orbital volume increment in fractured orbit showed linear correlation with the dimension of fractured area. The orbital volume changes after ethmoidal sinus packing also showed linear correlation with orbital volume increment in fractured orbit. This study showed the regressive linear correlation between the increment of orbital volume and the correction rate. To evaluate the maintenance of reduction state, we think that the further study should be done for comparative analysis of orbital volume change after removal of packing.

Perioperative Orbital Volume Change in Blowout Fracture Correction through Endoscopic Transnasal Approach (안와파열골절의 비강내 내시경적 접근을 통한 교정에서 수술 전후 안와 용적 변화)

  • Lee, Jae Woo;Nam, Su Bong;Choi, Soo Jong;Kang, Cheol Uk;Bae, Yong Chan
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.617-622
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the blowout fractures has many advantages over other techniques. But after removal of packing material, there were some patients with recurrence of preoperative symptoms. Authors tried to make a quantitative anterograde analysis of orbital volume change over whole perioperative period which might be related with recurrence of preoperative symptoms. Methods: 10 patients with pure medial wall fracture(Group I) and 10 patients with medial wall fracture combined with fracture of orbital floor(Group II) were selected to evaluate the final orbital volume change, who took 3 CT scans, pre-, postoperative and 4 months after packing removal. By multiplying cross - section area of orbit in coronal view with section thickness, orbital volume were calculated. Then, mean orbital volume increment after trauma, mean orbital volume decrement after endoscopic correction and volume increment after packing removal were found out. And we tried to find correlations between type of fracture, initial correction rate and final correction rate. Results: The mean orbital volume increment of the fractured orbits were 7.23% in group I and 13.69% in group II. After endoscopic surgery, mean orbital volume decrement were 11.0% in group I and 12.46% in group II. Mean volume increment after packing removal showed 3.10% in group I and 6.50% in group II. The initial correction rate(%) showed linear correlation with final correction rate(%) after packing removal. And there were negative linear correlation between increment percentage of orbital volume by fracture and final correction rate(%). Conclusion: Orbital volume was proved to be increasing after removal of packing or foley catheter and it was dependent upon type of fracture. Overcorrection should be done to improve the final result of orbital blowout fracture especially when there are severe fracture is present.

Correlation between the 2-Dimensional Extent of Orbital Defects and the 3-Dimensional Volume of Herniated Orbital Content in Patients with Isolated Orbital Wall Fractures

  • Cha, Jong Hyun;Moon, Myeong Ho;Lee, Yong Hae;Koh, In Chang;Kim, Kyu Nam;Kim, Chang Gyun;Kim, Hoon
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • Background The purpose of this study was to assess the correlation between the 2-dimensional (2D) extent of orbital defects and the 3-dimensional (3D) volume of herniated orbital content in patients with an orbital wall fracture. Methods This retrospective study was based on the medical records and radiologic data of 60 patients from January 2014 to June 2016 for a unilateral isolated orbital wall fracture. They were classified into 2 groups depending on whether the fracture involved the inferior wall (group I, n=30) or the medial wall (group M, n=30). The 2D area of the orbital defect was calculated using the conventional formula. The 2D extent of the orbital defect and the 3D volume of herniated orbital content were measured with 3D image processing software. Statistical analysis was performed to evaluate the correlations between the 2D and 3D parameters. Results Varying degrees of positive correlation were found between the 2D extent of the orbital defects and the 3D herniated orbital volume in both groups (Pearson correlation coefficient, 0.568-0.788; $R^2=32.2%-62.1%$). Conclusions Both the calculated and measured 2D extent of the orbital defects showed a positive correlation with the 3D herniated orbital volume in orbital wall fractures. However, a relatively large volume of herniation (>$0.9cm^3$) occurred not infrequently despite the presence of a small orbital defect (<$1.9cm^2$). Therefore, estimating the 3D volume of the herniated content in addition to the 2D orbital defect would be helpful for determining whether surgery is indicated and ensuring adequate surgical outcomes.

Inferior Blow-Out Fracture Reduction Using Two Urinary Balloon Catheters

  • Jo, Eun Jun;Kim, Jong Hwan;Yang, Ho Jik
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • Background: The reduction of orbital blowout fracture primarily aims to normalize the extra-ocular movement by returning the herniated orbital soft tissue into the original position, and to prevent enophthalmos by normalizing the orbital cavity volume. We introduce a balloon catheter-assisted orbital floor reduction technique. Methods: A retrospective review was performed for all patients with orbital floor fracture who underwent the technique described in the main body of this text. Medical records were reviewed for demographic data, clinical presentation and course, degree of enophthalmos, intraorbital volume on computed tomography scan, and postoperative outcomes. The enophthalmos and intraorbital volume of the injured site were compared to the uninjured eye and orbit. Results: The review identified 14 patients (11 male, 3 female). The mean preoperative difference in en-exopthalmos was 2.13 mm, while the mean orbital volume was 116%. The mean postoperative difference in en-exophthalmos had improved to 0.61 mm with a mean orbital volume of 101.85%. At the time of catheter removal at 10 days, three patients experienced diplopia (n=1), extra-ocular movement disorder (1), or enophthalmos (1). All of these had resolved by the 6-month follow-up visit. Conclusion: Balloon catheter-assisted reduction of the orbital floor fractures was associated with improvements in intraorbital volume and enopthalmos in the 14 patients. Notable complications included diplopia, enophthalmos, and limited extra-ocular movement, all of which were transient in the early postoperative period and had resolved by 6-month follow up.

Orbital wall restoration with primary bone fragments in complex orbital fractures

  • Jong Hyun Park;Dong Hee Kang;Hong Bae Jeon;Hyonsurk Kim
    • Archives of Craniofacial Surgery
    • /
    • v.24 no.2
    • /
    • pp.52-58
    • /
    • 2023
  • Background: Complex orbital fractures are impure orbital fractures because they involve the orbital walls and mid-facial bones. The author reported an orbital wall restoration technique in which the primary orbital wall fragments were restored to their prior position in complex orbital fractures in 2020. As a follow-up to a previous preliminary study, this study retrospectively reviewed the surgical results of complex orbital wall fractures over a 4-year period and compared the surgical outcomes by dividing them into groups with and without balloon restoration. Methods: Data of 939 patients with facial bone fractures between August 2018 and August 2022 were reviewed. Of these, 154 had complex orbital fractures. Among them, 44 and 110 underwent reduction with and without the balloon technique respectively. Pre- and postoperative Naugle exophthalmometer (Good-Lite Co.) scales were evaluated. The orbital volume and orbital volume ratio were calculated from preoperative and 6 months postoperative computed tomography images. Results: Among 154 patients with complex orbital fractures, 44 patients underwent restoration with the balloon technique, and 110 patients underwent restoration without it. The Naugle scale did not differ significantly between the two groups, but the orbital volume ratio significantly decreased by 3.32% and 2.39% in groups with and without the balloon technique and the difference in OVR was significantly greater in patients in the balloon restoration group compared with the control group. Postoperative balloon rupture occurred in six out of 44 cases (13.64%). None of the six patients with balloon rupture showed significant enophthalmos at 6 months of follow-up. Conclusion: The balloon rupture rate was 13.64% (6/44 cases) with marginal screw fixation, blunt screws, and extra protection with a resorbable foam dressing. Furthermore, we restored the orbital wall with primary orbital fragments using balloon support in complex orbital wall fractures.

Degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue (안와벽 골절 면적과 이탈된 안와내 조직의 부피에 따른 안구함몰 정도)

  • Jang, Hak-Sun;Leem, Dae-Ho;Baek, Jin-A;Shin, Hyo-Keun;Ko, Seung-O
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.205-213
    • /
    • 2011
  • Introduction: The enlargement and deformation of the orbit give rise to a visible enophthalmos. As a consequence, a disturbance of eye motility together with double images is likely to occur. This study examined the degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue in blowout fractures of the medial and inferior orbital wall. Materials and Methods: This study was performed on patients diagnosed with medial and inferior orbital wall fractures at the Department of Oral and maxillofacial surgery, Chonbuk National University Hospital from 2007 to 2009. The patients' age, gender, etiology of fracture and degree of enophthalmos were investigated. The changes in the degree of enophthalomos, diplopia and ocular motility restriction after operation were examined. Results: The degree of enophthalomos increased with increasing extent of orbital wall fracture and volume of herniated orbital tissue. Conclusion: Whether to perform the operation is decided after measuring the extent of the orbital wall fracture and volume of herniated orbital tissue using computed tomography (CT), time for the decision of operation can be shortened. This can cause a decrease in the complications of orbital wall fractures.

Reconstruction of Medial Orbital Wall Fractures without Subperiosteal Dissection: The "Push-Out" Technique

  • Kim, Yong-Ha;Lee, Jin Ho;Park, Youngsoo;Kim, Sung-Eun;Chung, Kyu-Jin;Lee, Jun-Ho;Kim, Tae Gon
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.496-501
    • /
    • 2017
  • Background Various surgical methods for repairing medial orbital wall fractures have been introduced. The conventional technique requires total separation of the displaced orbital bones from the orbital soft tissues. However, subperiosteal dissection around the fracture can cause additional damage. The aim of the present study is to introduce a method of reconstructing medial orbital wall fractures without subperiosteal dissection named the "push-out" technique. Methods Six patients with post-traumatic enophthalmos resulting from an old medial orbital wall fracture and 10 patients with an acute medial orbital wall fracture were included. All were treated with the push-out technique. Postoperative computed tomography (CT) was performed to assess the correct positioning of the implants. The Hertel scale and a comparison between preoperative and postoperative orbital volume were used to assess the surgical results. Results Restoration of the normal orbital cavity shape was confirmed by examining the postoperative CT scans. In the old fracture group, the median orbital volume of the fractured side was $29.22cm^3$ preoperatively, and significantly improved postoperatively to a value of $25.13cm^3$. In the acute fracture group, the median orbital volume of the fractured side was $28.73cm^3$ preoperatively, and significantly improved postoperatively to a value of $24.90cm^3$. Differences on the Hertel scale also improved, from 2.13 mm preoperatively to 0.25 mm postoperatively in the old fracture group and from 1.67 mm preoperatively to 0.33 mm postoperatively in the acute fracture group. Conclusions The push-out technique can be considered a good alternative choice for old medial orbital wall fractures with posttraumatic enophthalmos, acute medial orbital wall fractures including large fractured bone segments, and single-hinged greenstick fractures.

EFFECTS OF THE SITE AND THE EXTENT OF BLOWOUT FRACTURE ON ENOPHTHALMOS AND DIPLOPIA (Blowout 골절의 부위와 정도가 안구함몰 및 복시에 미치는 영향)

  • Hwang, Ung;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.292-300
    • /
    • 2004
  • Orbital blowout fractures are common consequence to blunt periorbital trauma. Pure orbital blowout fractures first occur at the weakest point of the orbital wall. Computed tomography(CT) is recognized to be the best imaging technique to evaluate orbital fractures. The extent and location of a blowout fractures in the CT scan were noted to have an effect on the clinical outcome. In the early posttraumatic period, the presence of significant enophthalmos is difficult to detect because of orbital edema. Early surgical intervention may improve the ultimate outcome because open reconstruction becomes more difficult if surgery is delayed. In this study, we evaluated isolated blowout fractures of the orbital floor by region-of-interest measurements from CT scans and their relationship to ophthalmologic findings. Six patients of the medial orbital wall fractures, eleven patients of the inferior orbital wall fractures, nineteen of the medial and the inferior orbital wall fractures confirmed by CT scan, were evaluated. The area of fracture and the volume of the displaced orbital tissue were determined from CT scan using linear measurements. Each of the calculated values for the area and the volume were compared with the degree of the enophthalmos, the diplopia, and the eyeball movement limitation to determine whether there was any significant relationship between them. The fracture area and the volume of the herniated orbital tissue were significantly positively correlated with the enophthalmos and the ocular motility limitation and not correlated with the diplopia. For the enophthalmos of 2mm or greater, the mean fracture area was 3.55{\pm}1.25cm^2$ and the volume of the herniated orbital tissue was $1.74{\pm}0.97cm^3$; for less than 2mm enophthalmos, $1.43{\pm}0.99cm^3$ and $0.52{\pm}0.49cm^3$, respectively. The enophthalmos of 2mm can be expected with $2.92cm^2$ of the fracture area and $1.40cm^3$ of the herniated orbital tissue. In conclusion, the enophthalmos of 2mm or more, which is a frequent indication for surgery. It can be expected when area of fracture is $2.92cm^2$ or more, or the volume of herniated orbital tissue is $1.40cm^3$ or more. And the CT scan using linear measurements has an application in the assessment of patients with blowout fractures and provides useful information in the posttraumatic evaluation of orbital fractures.

Anatomical Reconstruction of the Medial Orbital Wall Fracture (안와내벽골절의 해부학적 복원술)

  • Choi, Woo Kyung;Kang, Dong Hee;Oh, Sang Ah
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Purpose: In surgical treatment of the medial orbital wall fractures, restoring the original position of the orbital wall is difficult in some cases. Under such condition, the orbital wall is often reconstructed with synthetic material, without bony reduction, which is considered to be the conventional reconstruction. The purpose of this study is to compare the outcomes of anatomical reconstruction, which restores the bony wall to the anatomical position, from that of the conventional reduction in the isolated medial orbital wall fractures. Methods: Thirty patients, who underwent reconstruction surgery for the isolated medial orbital wall fractures from March 2007 to August 2011, were reviewed retrospectively. The surgical outcomes of two groups, the conventional reconstruction group (15 patients) and the anatomical reconstruction group (15 patients), were studied in 2 measurements, a one day before and 6 months after the surgery. The changes of orbital volume were calculated by the images from a computed tomography scan and enophthalmos was measured by a Hertel exophthalmometer. Results: The orbital volume ratio was decreased by an average of 1.05% in the conventional reconstruction group, while in the anatomical reconstruction group, the ratio decreased by 5.90% (p<0.05). The changes in the Hertel scale were 0.20 mm in the conventional reconstruction group, and 0.70 mm in the anatomical reconstruction group. However, the difference in the Hertel scale was statistically insignificant (p>0.05). Conclusion: In conclusion, the anatomical reconstruction technique of the isolated medial orbital wall fracture results in a better outcome than that of the conventional reconstruction, in terms of restoring of the original orbital volume and anatomic position. Thus, it can be considered as a useful method for the isolated medial orbital wall fractures.