• Title/Summary/Keyword: Orbit Insertion

Search Result 39, Processing Time 0.027 seconds

A Study on Lunar Orbit Insertion Maneuver using Finite Burn Model (유한 분사 모델을 이용한 달 궤도 진입 기동 연구)

  • Choi, Sujin;Bae, Jonghee;Kim, Eunhyeuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.96-107
    • /
    • 2014
  • Korea Aerospace Research Institute has a plan to launch experimental lunar orbiter in 2017, and lunar orbiter and lander in 2020. In the mission planning phase, LOI(Lunar Orbit Insertion) maneuver strategy should be designed using finite burn model because on-board propulsion system of lunar orbiter in finite burn type. LOI maneuver plan and amount of required ${\Delta}V$ using finite burn model depend on the spacecraft attitude at burn, a type of propellant, thrust level and burn timing. This paper describes the LOI maneuver of lunar orbiter of foreign space agency and then comes up with the LOI maneuver plan of Korean lunar orbiter. Adequate thrust level and burn duration of Korean lunar orbiter also present by performing simulation.

Correction of Persistent Enophthalmos after Surgical Repair of Blow Out Fracture Using Orbital Decompression Technique of Contralateral Eye (안와골파열골절 정복술 후 지속되는 안구함몰 환자에서 정상측 안구의 안구 감압술의 치험례)

  • Lee, Jun-Ho;Park, Won-Yong;Nam, Hyun-Jae;Kim, Yong-Ha
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.2
    • /
    • pp.101-104
    • /
    • 2008
  • Purpose: Diplopia and cosmetically unacceptable enophthalmos are the major complications of blow out fracture. Prolapse of orbital tissue into the sinuses, enlarged orbital volume, atrophy of orbital fat and loss of support of orbital walls play a role in the pathogenesis of enophthalmos. To correct post-traumatic enophthalmos, freeing of incarcerated orbital contents combined with reduction of bony orbital volume and reconstruction of suspensory support of globe is necessary. But remained enophthalmos after surgical treatment is difficult to correct completely. In this case, the authors performed implant insertion for affected orbit and endoscopic orbital decompression for unaffected orbit for correction of late enophthalmos. Method: We reviewed a girl patient with right inferomedial orbital wall blow out fracture, right zygoma fracture treated at our hospital for correction of enophthalmos. An 18-year-old female had sustained posttraumatic enopthalmos. Two surgical management was performed for correction blow out fracture at the other hospital. But residual diplopia, enophthalmos, cheek drooping were found. And then she transferred to our hospital. She had severe enophthalmos(5 mm) also had diplopia and extraocular muscle limitation. We performed operation for correction of enophthalmos. After operation, she showed minimal improvement of diplopia and enophthalmos(3 mm). The authors make plan for operation for correction enophthalmos due to cosmetical improvement. Implant insertion was performed for affected orbit. For unaffected orbit, nasoendoscopic medial orbital wall decompression was proceeded. Result: Correction of enophthalmos was found after operation and was maintained for nine years follow-up. Patient expressed satisfaction for the result. Conclusion: To correct persistant enophthalmos, we could have satisfactory result with orbital wall reconstruction on affected eye and decompression on unaffected eye.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Multiple revolution Lunar Trajectory Design using Impulsive Thrust

  • Kang, Hye-Young;Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.25.3-26
    • /
    • 2008
  • The direct way to the moon is to start from the parking orbit by using impulsive thruster In previous domestic research, the direct way has been studied by using a single impulsive shot. However, when a single impulsive shot occurs to go into a Translunar orbit, gravity losses occur because thruster is not impulsive shot but the finite burns and it causes the gravity losses. To make up for the weak point of a single impulsive shot, this paper divides TLI (Trans Lunar Injection) into several small burns. Therefore, departure loop trajectory and the Translunar trajectory. This method is useful not only to reduce the gravity losses but also to check the condition of satellite. By using this method, this paper demostrates the optimized trajectory from Earth parking orbit to lunar mission orbit which minimizes the fuel, and the SNOPT (Sparse Nonlinear OPTimizer software) is used to find optimal solution. Also, this paper provides lunar mission profile which includes the mission schedule when TLI, LOI (Lunar Orbit Insertion) maneuvers occur, a mount of fuel when thruster is used and other mission parameters.

  • PDF

Preliminary Analysis on Launch Opportunities for Sun-Earth Lagrange Points Mission from NARO Space Center

  • Song, Young-Joo;Lee, Donghun
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • In this work, preliminary launch opportunities from NARO Space Center to the Sun-Earth Lagrange point are analyzed. Among five different Sun-Earth Lagrange points, L1 and L2 points are selected as suitable candidates for, respectively, solar and astrophysics missions. With high fidelity dynamics models, the L1 and L2 point targeting problem is formulated regarding the location of NARO Space Center and relevant Target Interface Point (TIP) for each different launch date is derived including launch injection energy per unit mass (C3), Right ascension of the injection orbit Apoapsis Vector (RAV) and Declination of the injection orbit Apoapsis Vector (DAV). Potential launch periods to achieve L1 and L2 transfer trajectory are also investigated regarding coasting characteristics from NARO Space Center. The magnitude of the Lagrange Orbit Insertion (LOI) burn, as well as the Orbit Maintenance (OM) maneuver to maintain more than one year of mission orbit around the Lagrange points, is also derived as an example. Even the current work has been made under many assumptions as there are no specific mission goals currently defined yet, so results from the current work could be a good starting point to extend diversities of future Korean deep-space missions.

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory (직접 전이궤적을 이용한 한국형 달 궤도선 임무설계 및 분석)

  • Choi, Su-Jin;Song, Young-Joo;Bae, Jonghee;Kim, Eunhyeuk;Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.950-958
    • /
    • 2013
  • The Lunar orbiter is expected to be inserted into a ~300km low Earth orbit using Korea Space Launch Vehicle-II(KSLV-II). After the states are successfully determined with obtained tracking data, the Trans Lunar Injection(TLI) burn has to be done at appropriate epoch to send the lunar orbiter to the Moon. In this study, we describe in detail the mission scenario of the Korean lunar orbiter from the launch at NARO Space Center to lunar orbit insertion(LOI) stage following direct transfer trajectory. We investigate the launch window including launch azimuth, delta-V profile according to TLI and LOI burn positions. We also depict the visibility conditions of ground stations and solar eclipse duration to understand the characteristics of the direct transfer trajectory. This paper can be also helpful not only for overall understanding of ${\Delta}V$ trend by changing TOF and coasting time but for selecting launch epoch and control parameters to decrease fuel consumption.

A Study on the Applicability of Air Launch Vehicle (공중발사체의 활용가능성 분석 연구)

  • Kwon, Kybeom;Lee, Kanghyun;Cho, Ye Rang;Ji, Wan Gu;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • As the global demand for small satellites weighing less than 500 kg increases, the development and operation of dedicated small launch vehicles increase significantly. The responsiveness of a launch vehicle that puts a small satellite into a target orbit at the desired time is attracting attention. As a result, interest in the air launch is increasing in the rapid establishment of a constellation. As the demand for small satellites in south Korea increases, this study performed analyses on the applicability of an air launch vehicle using a large civil aircraft considering the geographical environment. In terms of responsiveness, mission response times were compared and analyzed for air launch vehicles and ground small and large vehicles. In addition, an air vehicle and a small ground vehicle were quantitatively compared and analyzed for the orbital insertion performance. As a result of the analysis, the air launch vehicle has limited responsiveness in Korea regarding rapid satellite constellation establishment. However, it can be an effective alternative for low inclination angle orbit insertion with the benefit of a fast turnaround time. Furthermore, the performance of the orbital injection is close to that of the ground small launch vehicle, and the high efficiency in terms of the required propellant mass is possible, so air launch can be an effective launch means for putting small satellites into orbit in Korea.

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

Types and Characteristics of Chemical Propulsion Systems for Repersentative Korean Satellites (국내의 대표적 인공위성 화학추진시스템의 형식 및 특성)

  • Han, Cho-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.747-752
    • /
    • 2007
  • Domestic satellite development programme is generally classified into two categories: COMS as GEO satellite and KOMPSAT as LEO one. Each satellite has the on-board propulsion system fulfilling its own mission requirements. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. It is the well-known Chemical Propulsion System(CPS) using bipropellants. On the other hand, the monopropellant propulsion system is employed in KOMPSAT, and its main role is on-station attitude control excluding the orbit transfer function. In this study, these two representative propulsion systems are compared and analysed as well, in terms of essential differences and important characteristics.