• Title/Summary/Keyword: Orbit Determination Accuracy

Search Result 89, Processing Time 0.021 seconds

Angles-Only Initial Orbit Determination of Low Earth Orbit (LEO) Satellites Using Real Observational Data

  • Hwang, Hyewon;Park, Sang-Young;Lee, Eunji
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a Korean optical space surveillance system used to track and monitor objects in space. In this study, the characteristics of four Initial Orbit Determination (IOD) methods were analyzed using artificial observational data from Low Earth Orbit satellites, and an appropriate IOD method was selected for use as the initial value of Precise Orbit Determination using OWL-Net data. Various simulations were performed according to the properties of observational data, such as noise level and observational time interval, to confirm the characteristics of the IOD methods. The IOD results produced via the OWL-Net observational data were then compared with Two Line Elements data to verify the accuracy of each IOD method. This paper, thus, suggests the best method for IOD, according to the properties of angles-only data, for use even when the ephemeris of a satellite is unknown.

A Comparison of Orbit Determination Performance for the KOMPSAT-2 using Batch Filter and Sequential Filter (아리랑위성 2호 데이터를 이용한 연속추정필터와 배치필터 처리 결과 비교)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this paper, the performance of the sequential filter for a space debris collision management system is analyzed by using the flight data of KOMPSAT-2. To analyze the performance of the sequential filter, the results of batch filter used in the orbit determination system of the KOMPSAT-2 ground station is used as reference data. The overlap method is also used to evaluate the orbit accuracy. This paper shows that the orbit determination accuracy of the sequential filter is similar to that of the KOMPSAT-2 ground station, but dissimilar characteristics exist due to the filter difference. In addition, it is also shown that the orbit determination accuracy is order of 1m root mean square by using 30 hour GPS navigation solutions and 6 hour comparison period for the overlap method.

PRECISE OR81T DETERMINATION OF GPS-36 SATELLITE USING SATELLITE LASER RANGING (SLR을 이용한 GPS-36 위성의 정밀 궤도 결정)

  • 임형철;박관동;박필호;박종욱;조정호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.385-394
    • /
    • 2002
  • Satellite laser ranging is a technique for precisely measuring the range between a laser station and a satellite that is equipped with retro-reflectors. SLR technique was first used for Beacon-B satellite in 1964 with the ranging accuracy of meter level. Now the single shot have centimeter level accuracy and the normal point have mm level in ranging. In this study we developed the algorithm for precise orbit determination using SLR data and performed the orbit determination of GPS-36 satellite using the algorithm. RMS of the estimated orbit was 74cm when compared with IGS precise orbit. It is known that RMS of SLR measurement residual is below 55mm. But we were able to achieve 44mm RMS of residual throughout this study.

Orbit Determination of LEO Satellite using Ground Tracking Data (지상국 추적 데이터를 이용한 저궤도 위성의 궤도결정 특성 분석)

  • Jung, Ok-Chul;Choi, Su-Jin;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-176
    • /
    • 2011
  • This paper analyzes the orbit determination results using azimuth and elevation angle from ground tracking data, which has the standard data interface format, GEOS-C. The ground tracking data is very useful for initial orbit determination after a satellite launch. In this paper, the quality of the measurement data has been investigated using a variety of real tracking passes, compared with the high precision orbit data of KOMPSAT-2. The accumulated tracking data from consecutive satellite-ground passes is processed for orbit determination using least square method. The accuracy of orbit determination result is also presented.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.

A STUDY OF GENERALIZED ADAMS-MOULTON METHOD FOR THE SATELLITE ORBIT DETERMINATION PROBLEM

  • Hong, Bum Il;Hahm, Nahmwoo
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.271-283
    • /
    • 2013
  • In this paper, a generalized Adams-Moulton method that is a $m$-step method derived by using the Taylor's series is proposed to solve the satellite orbit determination problem. We show that our proposed method has produced much smaller error than the original Adams-Moulton method. Finally, the accuracy performance is demonstrated in the satellite orbit correction problem by giving a numerical example.

Analysis on the Impact of Space Environment on LEO Satellite Orbit (우주환경 변화에 따른 저궤도 위성의 궤도변화 분석)

  • Jung, Okchul;Yim, Hyeonjeong;Kim, Hwayeong;Ahn, Sangil
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • The satellite orbit is continuously changing due to space environment. Especially for low earth orbit, atmospheric drag plays an important role in the orbit altitude decay. Recently, solar activities are expected to be high, and relevant events are occurring frequently. In this paper, analysis on the impact of geomagnetic storm on LEO satellite orbit is presented. For this, real flight data of KOMPSAT-2, KOMPSAT-3, and KOMPSAT-5 are analyzed by using the daily decay rate of mean altitude is calculated from the orbit determination. In addition, the relationship between the solar flux and geomagnetic index, which are the metrics for solar activities, is statistically analyzed with respect to the altitude decay. The accuracy of orbit prediction with both the fixed drag coefficient and estimated one is examined with the precise orbit data as a reference. The main results shows that the improved accuracy can be achieved in case of using estimated drag coefficient.

Monte-Carlo Simulation for GEO-KOMPSAT2 Orbit Determination Accuracy (Monte-Carlo 시뮬레이션을 통한 정지궤도복합위성 궤도결정 정밀도 해석)

  • Park, Bong-Kyu;Ahn, Sang Il;Kim, Bang Yeop
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.40-47
    • /
    • 2013
  • GEO-KOMPSAT2 shall be designed to produce higher quality of image than that of COMS, and this requires the ground system to provide orbit data with high accuracy; better than 2km which is sort of high accuracy when it comes to geostationary satellite. For GEO-KOMPSAT2, KARI is planning to use ranging data for orbit determination, obtained from two ranging stations located in KARI and oversea country with long longitudinal baseline. This paper estimated achievable orbit determination accuracy using covariance analysis under assumption of using two ranging stations; SOC and available secondary tracking stations located in oversea countries. In addition to covariance analysis, in order to validate the analysis, the Monte-Carlo simulation has been performed and compared to the covariance analysis.

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.