• Title/Summary/Keyword: Orbit Design

Search Result 399, Processing Time 0.036 seconds

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

Analysis and Modelling of Dynamically Variable Topology of Low Earth Orbit Satellite Networks (저궤도 위성 네트워크의 동적 토폴로지 해석 및 모델링)

  • Vazhenin, N.A.;Ka, Min-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.155-162
    • /
    • 2004
  • Recently, significant interest is shown to creation rather inexpensive global systems communications on base of Low-Earth-Orbit Satellite Networks (LEOSN). One of problems of design and creation LEOSN is development of the stream control methods and estimation it's efficiency in such networks. The given problem is complicated, that the topology of the satellite networks varies in time. It essentially hinders the analytical decision of the given problem. An effective way of overcoming of these difficulties is simulation modeling. For realization of research experiments on learning the information streams routing algorithms in LEOSN a special program complex SANET was developed. In the given paper principles of development of LEOSN simulation models and architecture of the manager by the process of a simulation modeling of the unit are considered. Methods of promotion of modeling time and architecture of a simulator complex offered in the article allow to boost essentially efficiency of simulation analysis and to ensure simulation modeling of the satellite networks consisting of several hundreds space vehicles.

  • PDF

Design of Ground Station System for CubeSat STEP Cube Lab. (큐브위성 STEP Cube Lab.의 지상국 시스템 설계)

  • Jeon, Younghyeon;Chae, Bonggeon;Jeong, Hyeonmo;Jeon, Seongyong;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (위성 자세제어 자이로 센서 피에조 구동기 설계)

  • Kim, Eui-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.341-343
    • /
    • 2009
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller Is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

  • PDF

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어를 위한 자이로의 광경로 제어기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.256-260
    • /
    • 2008
  • The Ring Laser Gyro makes use of the Sagnac effect within a resonant ring cavity of A He-Ne laser and has more accuracy than the other Gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, Integrator, Phase shifter, High Voltage Amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어 센서 RLG 피에조 구동기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1584-1588
    • /
    • 2008
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

Improved optical design and performances of Amon-Ra instrument energy channel

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Park, Won-Hyun;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this report, we present newly improved optical design for the Amon-Ra energy channel and its optical performance. The design is optimized parametrically with emphasis on improved light concentration. And then its performances are computed, first, from a laboratory test simulation using laser method (wave optics approach) and, second, from an in-orbit radiative transfer simulation using IRT method with 3D Earth model (geometrical optics approach). Two simulation test results show clear evidence of energy concentration improvement.

  • PDF

A Study For Design and Technology Analysis of Mobile Satellite Communication (이동 위성통신 시스템의 설계 및 기술적 분석에 관한 연구)

  • 이해영
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.177-186
    • /
    • 1998
  • In this paper, due to the congestion the radio spectrum, frequency bands are shared among the satellite communication system. Therefore for satisfactory we have to design and predict with reasonable accuracy the level of interference that might exist among them, Interference among the satellite communication systems depends on many factors such as climate, radio frequency, time percentage of interest, distance and path topography, propagation delay time. This paper suggest design method of Low-Orbit satellite communication and calculates the field-of view of satellite, for the communication era using LEO. In addition, performs performance evaluation on the basis of link margine.

  • PDF