• Title/Summary/Keyword: Orange-colored urine

Search Result 2, Processing Time 0.016 seconds

A Case of Idiopathic Renal Hypouricemia with URAT1 Gene Mutation who Showed Persistent Orange-colored Urine (지속적인 주황색 소변을 보인 URAT1 유전자 변이 신성 저요산혈증 1례)

  • Lee Joo-Hoon;Choi Jin-Ho;Yoo Han-Wook;Jeong Jin-Young;Park Young-Seo
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • Idiopathic renal hypouricemia is a disorder characterized by impaired urate handling in the renal tubules. Most patients with hypouricemia are asymptomatic and are found incidentally, but the condition is known to be at high risk for exercise-induced acute renal failure or urolithiasis. URAT1 protein encoded by SLC22A12 gene has been identified recently as a urate/anion exchanger in the human kidney. Inactivation mutations in SLC22A12 gene have been shown to cause renal idiopathic hypouricemia. We experienced a 3-year-old boy who presented with persistent orange-colored urine since infancy. His urine contained many uric acid crystals, while the serum showed hypouricemia(0.7 mg/dL). The fractional excretion of uric acid was increased to 41.7%. SLC22a12 gene analysis revealed W258X homozygote alleles. Renal hypouricemia must be included in the differential diagnosis of red-urine and SLC22A12 gene analysis is recommended in idiopathic renal hypouricemia.

  • PDF

Partial HPRT Deficiency Due to a Missense Mutation in the HPRT Gene (HPRT 유전자 돌연변이에 의한 HPRT 부분결핍증 1례)

  • Yang Ju-Hee;Park Min-Hyuk;Kim Deok-Soo;Shim Jae-Won;Shim Jung-Yeon;Jung Hye-Lim;Yoo Han-Wook;Park Moon-Soo
    • Childhood Kidney Diseases
    • /
    • v.7 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • An 8-month-old male infant presented with persistent, gross, orange-colored crystals in his urine. His physical and neurological development was normal. Laboratory study showed hyperuricemia, hyperuricosuria and urate crystaluria. He was determined to have partial hypoxanthine-guanine phosphoribosyl transferase(HPRT) deficiency. The molecular genetic analysis revealed a missense mutation in the patient's HPRT gene. By sequencing the patient's cDNA, we identified an A-to-G transition at nucleotide 239, resulting in the replacement of Aspartate with Glycine at amino acid 80 in the HPRT. To our knowledge, this mutation has not previously been reported. Our patient is now being placed on allopurinol therapy, and has had no problem since. Partial HPRT deficiency has been known to cause recurrent acute renal failure without the phenotypic features of Lesch-Nyhan syndrome. Therefore, we think that early diagnosis and treatment are very crucial in preventing acute renal failure.

  • PDF