• 제목/요약/키워드: Oral tissue regeneration

검색결과 275건 처리시간 0.023초

A novel amnion-chorion allograft membrane combined with a coronally advanced flap: a minimally invasive surgical therapy to regenerate interdental papillary soft tissue recession - a six-month postoperative image analysis-based clinical trial

  • Pitale, Unnati;Pal, Pritish Chandra;Boyapati, Ramanarayana;Bali, Ashish;Varma, Manish;Khetarpal, Shaleen
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권6호
    • /
    • pp.438-444
    • /
    • 2021
  • Objectives: Loss of the interdental papilla is multi-factorial and creates a multitude of problems. Autogenous connective tissue/biomaterial-based regeneration has been attempted for decades to reconstitute the black space created due to the loss of papilla. The aim of this present study was to regenerate papillary recession defects using an amnion-chorion membrane (ACM) allograft and to evaluate the clinical outcome up to six months postoperatively. Materials and Methods: Twenty patients with 25 Nordland and Tarnow's Class I/II interdental papillary recession defects were treated with ACM and coronal advancement of the gingivo-papillary unit via a semilunar incision on the labial aspect followed by a sulcular incision in the area of interest. A photographic image analysis was carried out using the GNU Image Manipulation software program from the baseline to three and six months postoperatively. The black triangle height (BTH) and the black triangle width (BTW) were calculated using the pixel size and were then converted into millimeters. The mean and standard deviation values were determined at baseline and then again at three and six months postoperatively. The probability values (P<0.05 and P≤0.01) were considered statistically significant and highly significant, respectively. An analysis of variance and post hoc Bonferroni test were carried out to compare the mean values. Results: Our evaluation of the BTH and BTW showed a statistically and highly significant difference from the baseline until both three and six months postoperatively (P=0.01). A post hoc Bonferroni test disclosed a statistically significant variance from the baseline until three and six months postoperatively (P<0.05) and a non-significant difference from three to six months after the procedure (P≥0.05). Conclusion: An ACM allograft in conjunction with a coronally advanced flap could be a suitable minimally invasive alternative for papillary regeneration.

Scaffold상에 식립한 사람치주인대섬유모세포를 통한 치주조직공학 (Periodontal tissue engineering by hPDLF seeding on scaffold)

  • 김성신;김병옥;박주철;장현선
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.757-765
    • /
    • 2006
  • Human periodontal ligament fibroblasts (hPDLF) are very important for curing the periodontal tissue because they can be differentiated into various cells. A tissue engineering approach using a cell-scaffold is essential for comprehending today's periodontal tissue regeneration procedure. This study examined the possibility of using an acellular dermal matrix as a scaffold for human periodontalligament fibroblast (hPDLF). The hPDLF was isolated from the middle third of the root of periodontally healthy teeth extracted for orthodontic reasons. The cells were cultured in a medium containing Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $37^{\circ}C$ in humidified air with 5% $CO_2$. The acellular dermal matrix(ADM) was provided by the US tissue banks(USA). Second passage cells were used in this study. The hPDLF cells were cultured with the acellular dermal matrix for 2 days, and the dermal matrix cultured by the hPDLF was transferred to a new petri dish and used as the experimental group. The control group was cultured without the acellular dermal matrix, The control and experimental cells were cultured for six weeks. The hPDLF cultured on the acellular dermal matrix was observed by Transmission Electron microscopy (TEM). Electron micrography shows that the hPDLF was proliferated on the acellular dermal matrix. This study suggests that the acellular dermal matrix can be used as a scaffold for hPDLF.

간세포성장인자가 골결손부의 치유에 미치는 영향 (THE EFFECT OF HEPATOCYTE GROWTH FACTOR FOR REPAIR OF THE BONE DEFECT)

  • 신상훈;김창주;김철훈;김용덕;정인교
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.380-390
    • /
    • 2004
  • Bone healing plays an important role in orthognathic and craniofacial surgery. Bone tissue repair and regeneration are regulated by an array of growth and morphogenetic factors. Bone formation and remodeling require continuous generation of osteoprogenitor cells from bone marrow stromal cells, which generate and respond to a variety of growth factors with putative roles in hematopoiesis and mesenchymal differentiation. In this study, the efficacy of a single application of hepatocyte growth factor to promote bone regeneration in 5-mm experimental calvarial defects of adult male rats was assessed histologically and immunohistochemically. The result of the experimental site were compared with those of the contralateral contral side. None of the control and experimental bone defects demonstrated complete bone closure. Bone regeneration was found close th the margine and central part of the defects. At 1, 2 weeks, there were found much significant cellural mitotic activity and many inflammatory cells and osteoblasts on the experimental site than control site. At 4, 6 weeks, new bone apposition was founded in both site but, more apposition was seen at experimental site. At 8, 12 weeks, also, some differences was found that more apposition of new bone and collagen fiber was seen on experimental site. Our results have some possibility that HGF do a early positive role to repair the bone defect. More study will be needed.

세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가 (Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold)

  • 유훈;송경호;임현창;이중석;윤정호;서영권;정의원;이용근;오남식;최성호
    • 대한구강악안면임플란트학회지
    • /
    • 제18권2호
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.

실험적 치은염이 치조골 치유에 미치는 영향에 관한 연구 (A STUDY ON THE EFFECTS OF THE EXPERIMENTAL GINGIVITIS TO THE REPAIR OF ALVEOLAR BONE)

  • 안형준;이만섭
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.461-474
    • /
    • 1993
  • This study was performed to estimate the effect of plaque control on the progress of the repair pattern of the alveolar bone surface after bone surgery. In this experiment six mongrel dogs were used, four of them were as experimental group and others were as control. In the case of experimental group, dental floss ligature was tied over the neck of crown for permiting of plaque accumulation during one week before surgery and oral hygiene procedures were not performed. In control group, all the surgical intervention was done as same procedure with experimental except oral hygiene program. After surgery plaque was controlled during one week with using the chlorhexidine brushing. Animals were sacrificed at 1,2,4,6 weeks after osseous surgery. The results were as follows : 1. The alveolar bone defects were covered with regenerated epithelium at one week, matrix change of granulation tissue on subcutaneous area was observed, and new bone formation was initiated from the surface of the bone defects. 2. The connective tissue arrangement revealed more dense, new bone formation by osteoblasts was active at 2 weeks and proliferation of gingival epithelium and alveolar bone tissue were evident at 4 weeks, and almostly recovered to normal condition at 6 weeks. 3. In experimental group, inflammatory reaction was persistent in early stage and bone repair was delayed compared to control group. 4. In control group, matrix change of granulation tissue was initiated from one week, regeneration of gingival epithelium and maturation of subcutaneous conective tissue and new bone formation were evident at 2 weeks, so almost normal bone regeneration was observed at 4,6 weeks.

  • PDF

지방기질유래 줄기세포의 골 분화 시 성장인자의 효과 (THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS)

  • 김욱규;최연식;정진섭
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권4호
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Retrospective comparative clinical study for silk mat application into extraction socket

  • Kim, Ju-Won;Jo, You-Young;Kim, Jwa-Young;Oh, Ji-hyeon;Yang, Byoung-Eun;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.16.1-16.6
    • /
    • 2019
  • Background: Silk mats have been approved for clinical trials by the Korean Food and Drug Administration as membranes for guided tissue regeneration (GTR). In this study, silk mat application was compared to high-density polytetrafluoroethylene (dPTFE) membrane application or no membrane group. Methods: To compare the silk mat group to the dPTFE group or the no membrane group, a retrospective sample collection was conducted. Bony defects were measured at the time of extraction (T0) and then at 3 months (T1) and 6 months after extraction (T2) on a digital panoramic view. Bone gain (BG) was calculated by subtracting from the bony defect at T0 to the bony defect at each follow-up. Results: The BG at T2 was 2.44 ± 2.49 mm, 4.18 ± 1.80 mm, and 4.24 ± 2.05 mm in the no membrane group, silk mat group, and dPTFE group, respectively. Both membrane groups had significantly higher BG than BG in the no membrane group at T2 (P < 0.05). Conclusions: Both membrane groups showed higher BG than the no membrane group.

치주조직유도재생술 시행시 Gore-tex 차폐막에 부착되는 치주세균에 대한 미노클린첨부제의 향균력에 대한 미생물학적 연구 (Microbiological study of the antibacterial effects of locally delivered $Minocycline^R$ on the plaque accumulation on $Gore-tex^R$ membrane during the guided tissue regeneration therapy)

  • 최점일;주애라
    • Journal of Periodontal and Implant Science
    • /
    • 제26권2호
    • /
    • pp.356-364
    • /
    • 1996
  • The present study was done to evaluate the antibacterial effects of $Minoclin^R$ which was localally delivered on the $Gore-tex^R$ barrier membrane in the guided tissue regeneration(GTR) therapy for treatment of human furcal defects. Beneath the membranes. the antibiotics were applied for 1 week and then changed with new one. The $Minoclin^R$ was removed out one week later. 6 weeks after the GTR therapy. No systemic antibiotics were administered except for oral mouthrinses with chlorhexidines. 2 weeks and 6 weeks following the membrane therapy, the bacterial samples were examined for periodontopathic microorganisms. The results indicated that the locally delivered $Minoclin^R$ successfully inhibited the growth of periodontopathic organisms. This results might be further applied in the subgingival plaque control regimen in the GTR procedure, especialy in patients who is contraindicated for oral administration of systemic antibiotics

  • PDF

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제47권5호
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.