• Title/Summary/Keyword: Oral microbiology

Search Result 671, Processing Time 0.026 seconds

The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals

  • MinKee Son;Yuri Song;Yeuni Yu;Si Yeong Kim;Jung-Bo Huh;Eun-Bin Bae;Won-Tak Cho;Hee Sam Na;Jin Chung
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.233-244
    • /
    • 2023
  • Purpose: An implant-supported prosthesis consists of an implant fixture, an abutment, an internal screw that connects the abutment to the implant fixture, and the upper prosthesis. Numerous studies have investigated the microorganisms present on the implant surface, surrounding tissues, and the subgingival microflora associated with peri-implantitis. However, there is limited information regarding the microbiome within the internal screw space. In this study, microbial samples were collected from the supragingival surfaces of natural teeth, the peri-implant sulcus, and the implant-abutment screw hole, in order to characterize the microbiome of the internal screw space in healthy subjects. Methods: Samples were obtained from the supragingival region of natural teeth, the peri-implant sulcus, and the implant screw hole in 20 healthy subjects. DNA was extracted, and the V3-V4 region of the 16S ribosomal RNA was sequenced for microbiome analysis. Alpha diversity, beta diversity, linear discriminant analysis effect size (LEfSe), and network analysis were employed to compare the characteristics of the microbiomes. Results: We observed significant differences in beta diversity among the samples. Upon analyzing the significant taxa using LEfSe, the microbial composition of the implant-abutment screw hole's microbiome was found to be similar to that of the other sampling sites' microbiomes. Moreover, the microbiome network analysis revealed a unique network complexity in samples obtained from the implant screw hole compared to those from the other sampling sites. Conclusions: The bacterial composition of the biofilm collected from the implant-abutment screw hole exhibited significant differences compared to the supra-structure of the implant. Therefore, long-term monitoring and management of not only the peri-implant tissue but also the implant screw are necessary.

The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model

  • Kang, Yei-Jin;Noh, Ji-Eun;Lee, Myung-Jin;Chae, Weon-Sik;Lee, Si Young;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.29.1-29.9
    • /
    • 2016
  • Background: The objective of this study was to evaluate xenograft degradation velocity when treated with 4-hexylresorcinol (4HR). Methods: The scapula of a cow was purchased from a local grocery, and discs (diameter 8 mm, thickness 1 mm) were prepared by trephine bur. Discs treated with 4HR were used as the experimental group. Untreated discs were used as the control. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), antibacterial test, endotoxin test, and scanning electron microscopy (SEM) were performed on the discs. In vivo degradation was evaluated by the rat calvarial defect model. Results: The XRD and FT-IR results demonstrated successful incorporation of 4HR into the bovine bone. The experimental disc showed antibacterial properties. The endotoxin test yielded results below the level of endotoxin contamination. In the SEM exam, the surface of the experimental group showed needle-shaped crystal and spreading of RAW264.7 cells. In the animal experiments, the amount of residual graft was significantly smaller in the experimental group compared to the control group (P = 0.003). Conclusions: In this study, 4HR was successfully incorporated into bovine bone, and 4HR-incorporated bovine bone had antibacterial properties. In vivo experiments demonstrated that 4HR-incorporated bovine bone showed more rapid degradation than untreated bovine bone.

Cloning and Expression of hpaA Gene of Korean Strain Helicobacter pylori K51 in Oral Vaccine Delivery Vehicle Lactococcus lactis subsp. lactis MG1363

  • Kim Su-Jung;Jun Do-Youn;Yang Chae-Ha;Kim Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.318-324
    • /
    • 2006
  • In order to develop an oral vaccine to prevent H. pylori infection, we have expressed the hpaA gene of H. pylori K51 isolated from Korean patients, encoding 29-kDa HpaA that is known to be localized on the cell surface and flagella sheath, in a live delivery vector system, Lactococcus lactis. The hpaA gene, amplified by PCR using the genomic DNA of H. pylori K51, was cloned in the pGEX-2T vector, and the DNA sequence analysis revealed that the hpaA gene of H. pylori K51 had 99.7% and 94.8% identity with individual hpaA genes of the H. pylori 26695 strain (U.K) and the J99 strain (U.S.A). A polyclonal anti-HpaA antibody was raised in rats using GST-HpaA fusion protein as the antigen. The hpaA gene was inserted in an E. coli-L. lactis-shuttle vector (pMG36e) to express in L. lactis. Western blot analysis showed that the expression level of HpaA in the L. lactis transformant remained constant from the exponential phase to the stationary phase, without extracelluar secretion. These results indicate that the HpaA of H. pylori K51 was successfully expressed in L. lactis, and suggest that the recombinant L. lactis expressing HpaA may be applicable as an oral vaccine to induce a protective immune response against H. pylori.

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Development and Optimization of a Rapid Colorimetric Membrane Immunoassay for Porphyromonas gingivalis

  • Lee, Jiyon;Choi, Myoung-Kwon;Kim, Jinju;Chun, SeChul;Kim, Hong-Gyum;Lee, HoSung;Kim, JinSoo;Lee, Dongwook;Han, Seung-Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.705-709
    • /
    • 2021
  • Porphyromonas gingivalis (P. gingivalis) is a major bacterial pathogen that causes periodontitis, a chronic inflammatory disease of tissues around the teeth. Periodontitis is known to be related to other diseases, such as oral cancer, Alzheimer's disease, and rheumatism. Thus, a precise and sensitive test to detect P. gingivalis is necessary for the early diagnosis of periodontitis. The objective of this study was to optimize a rapid visual detection system for P. gingivalis. First, we performed a visual membrane immunoassay using 3,3',5,5'-tetramethylbenzidine (TMB; blue) and coating and detection antibodies that could bind to the host laboratory strain, ATCC 33277. Antibodies against the P. gingivalis surface adhesion molecules RgpB (arginine proteinase) and Kgp (lysine proteinase) were determined to be the most specific coating and detection antibodies, respectively. Using these two selected antibodies, the streptavidin-horseradish peroxidase (HRP) reaction was performed using a nitrocellulose membrane and visualized with a detection range of 103-105 bacterial cells/ml following incubation for 15 min. These selected conditions were applied to test other oral bacteria, and the results showed that P. gingivalis could be detected without cross-reactivity to other bacteria, including Streptococcus mutans and Escherichia fergusonii. Furthermore, three clinical strains of P. gingivalis, KCOM 2880, KCOM 2803, and KCOM 3190, were also recognized using this optimized enzyme immunoassay (EIA) system. To conclude, we established optimized conditions for P. gingivalis detection with specificity, accuracy, and sensitivity. These results could be utilized to manufacture economical and rapid detection kits for P. gingivalis.

Microbial profiling of peri-implantitis compared to the periodontal microbiota in health and disease using 16S rRNA sequencing

  • Hyun-Joo Kim;Dae-Hee Ahn;Yeuni Yu;Hyejung Han;Si Yeong Kim;Ji-Young Joo;Jin Chung;Hee Sam Na;Ju-Youn Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Purpose: The objective of this study was to analyze the microbial profile of individuals with peri-implantitis (PI) compared to those of periodontally healthy (PH) subjects and periodontitis (PT) subjects using Illumina sequencing. Methods: Buccal, supragingival, and subgingival plaque samples were collected from 109 subjects (PH: 30, PT: 49, and PI: 30). The V3-V4 region of 16S rRNA was sequenced and analyzed to profile the plaque microbiota. Results: Microbial community diversity in the PI group was higher than in the other groups, and the 3 groups showed significantly separated clusters in the buccal samples. The PI group showed different patterns of relative abundance from those in the PH and PT groups depending on the sampling site at both genus and phylum levels. In all samples, some bacterial species presented considerably higher relative abundances in the PI group than in the PH and PT groups, including Anaerotignum lactatifermentans, Bacteroides vulgatus, Faecalibacterium prausnitzii, Olsenella uli, Parasutterella excrementihominis, Prevotella buccae, Pseudoramibacter alactolyticus, Treponema parvum, and Slackia exigua. Network analysis identified that several well-known periodontal pathogens and newly recognized bacteria were closely correlated with each other. Conclusions: The composition of the microbiota was considerably different in PI subjects compared to PH and PT subjects, and these results could shed light on the mechanisms involved in the development of PI.

Interplay of collagen and mast cells in periapical granulomas and periapical cysts: a comparative polarizing microscopic and immunohistochemical study

  • Deepty Bansal;Mala Kamboj;Anjali Narwal;Anju Devi;Nisha Marwah
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.12.1-12.11
    • /
    • 2022
  • Objectives: This pilot study aimed to establish the interrelationship between collagen and mast cells in periapical granulomas and periapical cysts. Materials and Methods: An observational cross-sectional study was conducted on the paraffin-embedded tissue sections of 68 specimens (34 periapical granulomas and 34 periapical cysts). The specimens were stained with picrosirius to observe collagen fiber birefringence and anti-tryptase antibody to evaluate the mast cell count immunohistochemically. The mean number and birefringence of collagen fibers, as well as the mean number of mast cells (total, granulated, and degranulated), and the mean inflammatory cell density were calculated. The data obtained were analyzed using the Kruskal Wallis test, Mann Whitney U test, and Spearman correlation test (p < 0.05). Results: The mean number of thick collagen fibers was higher in periapical cysts, while that of thin fibers was higher in granulomas (p = 0.00). Cysts emitted orange-yellow to red birefringence, whereas periapical granulomas had predominantly green fibers (p = 0.00). The mean inflammatory cell density was comparable in all groups (p = 0.129). The number of total, degranulated, and granulated mast cells exhibited significant results (p = 0.00) in both groups. Thick cyst fibers showed significant inverse correlations with inflammation and degranulated mast cells (p = 0.041, 0.04 respectively). Conclusions: Mast cells and inflammatory cells influenced the nature of collagen fiber formation and its birefringence. This finding may assist in the prediction of the nature, pathogenesis, and biological behavior of periapical lesions.

Mutanase Induction in Trichoderma harzianum by Cell Wall of Laetiporus sulphureus and its Application for Mutan Removal from Oral Biofilms

  • Wiater, Adrian;Szczodrak, Janusz;Pleszczynska, Malgorzata
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1335-1341
    • /
    • 2008
  • The cell wall material from fruiting bodies of Laetporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the cell wall fraction from this polypore fungus contained 56.3% of (1$\rightarrow$3)-linked $\alpha$-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranase-pretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45$^{\circ}C$. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase.

Comparison of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ Bacterial Viability Test and alamarBlue$^{(R)}$ Method for Enumeration of Live and Dead Bacteria for Oral Bacterial Species

  • Kim, Yeon-Hee;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.197-201
    • /
    • 2012
  • LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ and alamarBlue$^{(R)}$ are fluorescent materials used for the enumeration of live and dead bacteria. LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is generally used for confocal microscopy applications to differentiate live from dead bacteria in a biofilm or planktonic state. AlamarBlue$^{(R)}$ has also been used widely to assay live and dead bacteria in a planktonic state. Whilst these materials are successfully utilized in experiments to discriminate live from dead bacteria for several species of bacteria, the application of these techniques to oral bacteria is limited to the use of LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ in biofilm studies. In our present study, we assessed whether these two methods could enumerate live and dead oral bacterial species in a planktonic state. We tested the reagents on Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Enterococcus faecalis and found that only LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ could differentiate live from dead cells for all five of these oral strains. AlamarBlue$^{(R)}$ was not effective in this regard for P. gingivalis or A. actinomycetemcomitans. In addition, the differentiation of live and dead bacterial cells by alamarBlue$^{(R)}$ could not be performed for concentrations lower than $2{\times}10^6$ cells/ml. Our data thus indicate that LIVE/DEAD$^{(R)}$ BacLight$^{TM}$ is a more effective reagent for this analysis.

Identification of Bacterial Flora on Cellular Phones of Dentists

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.39 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Dental professionals are repeatedly exposed to many microorganisms present in both blood and saliva. Thus, dental professionals are at a greater risk of acquiring and spreading infections, and the implementation of infections control guidelines is necessary. Cellular phones have become a necessary device for communicating in hospitals. Cellular phones contaminated with bacteria may serve as a fomite in the transmission of pathogens by the hands of medical personnel. Nevertheless, studies about rate and levels of bacterial contamination of cellular phones have been extremely limited with regards to dental personnel. The purpose of this study was to identify bacterial flora on the cellular phones of dentists by a molecular biological method using the 16S rRNA cloning and sequencing method. We acquired total 200 clones from dentists' cell phones and identified the bacterial species. Pseudomonas (34.6%), Lactobacillus (18.5%), Azomonas (11.5%), and Janthinobacterium (6%) were the dominant genera on dentists' cell phones. The oral bacteria identified were Anaerococcus lactolyticus, Gibbsiella dentisursi, Lactobacills leiae, Streptococcus mitis, Streptococcus oligofermentans, and Streptococcus sanguinis. Pathogenic bacteria and opportunistic pathogens such as Carnobacterium funditum, Raoultella planticola, Shigella flexneri, Lactobacillus iners, Staphylococcus aureus, and Staphylococcus epidermidis were also identified.