• Title/Summary/Keyword: Optode membrane

Search Result 7, Processing Time 0.022 seconds

Determination of Cadmium Ions by Designing an Optode Based on Immobilization of Dithizone on a Triacetylecelluose Membrane in Polluted Soil and Water Samples

  • Tavallali, Hossein;Kazempourfard, Fatemeh
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • An optode for cadmium ion determination has been designed by immobilization of dithizone on triacetylcellose membrane. When the optode membrane is introduced into a real samples containing cadmium, there is a color change from green to red, making it possible to use the change in absorbance at 611 nm as the analytical signal. The sensor could be used in the range of 0.3-3 ${\mu}g\;ml^{-1}$ (2.67-26.67 ${\mu}M$) of $Cd^{2+}$ ions with a limit of detection of 0.025 ${\mu}g\;ml^{-1}$ (25 ng $ml^{-1}$). The response time of optode is within 15 min depending on the concentration of $Cd^{2+}$ ions. It can be easily and completely regenerated by dilute EDTA solution. The effect of different possible interfering species has been examined and was shown the optode has a good selectivity. The results obtained for the determination of cadmium ion in polluted soil and water samples using the proposed optode was found to be comparable with the well-established atomic absorption method.

Studies of Polymer Matrix Effect for Coextraction Type Anion-Selective Optode and Determination of Thiocyanate in Human Saliva

  • Hong, Young-Ki;Cha, Geun-Sig;Shin, Doo-Soon;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.836-841
    • /
    • 1994
  • The polymer matrix effect on the selectivity, response rate and reproducibility for coextraction type anion-selective optode membranes were investigated with DOA-plasticized PVC, PVC/hydroxylated PVC, PU/hydroxylated PVC and DOS-plasticized CTA matrices. Optode membranes were prepared with TDMACl and ETH2412 dissolved in one of the four solvent polymeric matrices. The PU/hydroxylated PVC and PVC-based membranes have almost the same selectivity coefficients, while the CTA-based membrane is more selective toward lipophilic anions. The membrane with PU/hydroxylated PVC adhered strongly to a glass surface, and showed highly reproducible and relatively rapid response. Very poor adhesion of PVC/hydroxylated PVC and CTA-based membranes limited the usability of those membranes as sensor components. Based on these results, and considering the biocompatibility for clinical samples, the optode made with PU/hydroxylated PVC was applied to determine the thiocyanate ion in human saliva. The results obtained with this simple device were comparable to those with rather complicated ISE methods.

Response Mechanism of 5, 10, 15, 20-tetraphenyl(porphyrinato) Manganase(III) chloride-Based Ion-Selective Membranes (망간포르피린을 함유한 고분자형 이온선택성 막전극의 감응 메카니즘)

  • Hong, Young Ki;Kang, You Ra;Shin, Dae Ho;Shin, Doo Soon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.270-278
    • /
    • 1996
  • Response mechanism for the chloride-selective membrane doped with 5, 10, 15, 20-tetraphenyl(porphyrinato)manganase(III) chloride(Mn(TPP)Cl) in PVC/DOS matrix is proposed by examining the visible spectra of the corresponding optode membrane. The visible spectra of Mn(TPP)Cl-doped membrane placed in aqueous solution show that the chloride ligand is easily replaced with water molecule. When other halogen ions, such as $F^-$, $Br^-$ and $I^-$, are added to the sample solution, they replace the water ligand, exhibiting distinctive change in the Soret band of Mn(TPP). On the other hand, bulky anions, such as SCN and salicylate, do not form a bond with the central metal. These results suggests that the potentiometric response of Mn(TPP)-based membrane results either from the ligand exchange (water with halides) at the central metal or from the counter ion exchange (chlorides with bulky lipophilic anions) around the positively charged porphyrin molecule in membrane phase. It was also noted that both hydration enthalpies of anions and their binding constants to Mn(TPP) play critical role in determining the potentiometric selectivity pattern of the membrane.

  • PDF

An Optochemical Sensor for the Determination of Divalent Transition Metal Ions Based on a Reactive Dye (반응성 염료를 이용한 2가 전이금속 측정용 광센서)

  • Kim, Sung Bae;Lee, Hyuk Jin;Kim, Jin Mog;Shin, Doo Soon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.305-310
    • /
    • 1998
  • A reactive dye synthesized with an amine containing Eriochrome Black T derivative and cynauric chloride was immobilized on a cellulose membrane to construct an optical sensor for the detection of divalent transition metal ions in aqueous solution. The response of this reactive dye-based optical sensor was as sensitive as that of Eriochrome Black T in solution phase. Its typical detection limits for $Zn^{2+}$ and $Co^{2+}$ were $6.3{\times}10^{-5}mol/l$ and $2.5{\times}10^{-4}mol/l$, respectively. No loss in the sensitivity of reactive dye-based sensor was observed even the pH of flowing solutions continually varied for an extended period of time.

  • PDF

Spectrofluorimetric Determination of Pb ion in Aqueous Media Using an Optical Sensor (광센서를 이용한 수용액 중 납이온의 형광분광법적 정량)

  • Lee, Sang Hak;Seo, Hyo Suk
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.407-411
    • /
    • 2002
  • A method to determine lead ion in aqueous media using an optical sensor loaded on a fluorescent optode membrane incoporating a metal ion-selective ionophore, a proton-selective chromoionophore and lipophilic anionic sites has been studied. The effects of pH and thickness of membrane on the fluorescence intensity were investigated. The effects of foreign ions such as $Na^+$, $K^+$, $Mn^{2+}$ and $Zn^{2+}$ on the determination of lead ion were also studied. The linear range in the calibration curve for the determination of lead ion was found to be 5.0${\times}10^-7$ to 5.0${\times}$$10^-3$M and the correlation coefficient in this range was -0.99107 under the optimal experimental conditions. The relative standard deviation of the blank signals was 3.0% and the detection limit of lead ion was 5.0${\times}$$10^-9$M.

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF

Thin-film optical waveguide $K^{+}$-ion sensor using the evanescent field absorption (소산장 흡수를 이용한 박막 광도파로형 칼륨이온센서)

  • Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.214-220
    • /
    • 1997
  • A thin film optical waveguide sensor has been developed to measure and analyze quantitatively some inherent optical properties of biochemical substances. In this paper, two different kinds of thickness of thin film waveguide were prepared by RF sputtering of Corning-7059 glass(n = 1.588 at ${\lambda}=\;514nm$, Ar laser) on Pyrex glass substrates. We made a sensing membrane coated on the thin film waveguide with the poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (91 : 3 : 6) copolymer membrane based on $H^{+}$-selective chromoionophore and $K^{+}$-selective neutral ionophore and then proposed the thin film opptical waveguide ion sensor which can select a potassium ion. This sensor based ell the absorbance change by utilizing chromoionophore and neutral ionophore, which changes their absorption spectrum in the UV-vis region upon complexation of the corresponding ionic species, have been reported. The sensitivity dependence of the proposed sensor on interaction length, waveguide thickness, and content of a chromoionophore was investigated. This sensor has the measurement range of $10^{-6}M{\sim}1M$ for $K^{+}$ concentration and 90% response time of duration within 1 min. Also, our thin film optical waveguide sensor using the evanescent field was investigated as compared with conventional transmission sensor or optode sensor by the optical fiber. The sensitivity of thin-film waveguide $K^{+}$ sensor is higher than that of the conventional transmission sensor. The proposed sensor is expected to be useful to biochemical, medical, environmental inspection and so on.

  • PDF