• Title/Summary/Keyword: Optimum-adaptive

Search Result 238, Processing Time 0.021 seconds

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

A Study on the Rainfall Attenuation Adaptive Power Control System for Implementing B-WLL (B-WLL 구현을 위한 강우감쇠 적응형 출력제어장치에 대한 고찰)

  • 목진담;정희창
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.462-466
    • /
    • 1999
  • As the spectrum migrates to the higher frequency band around several milimeters wavelength for implementing wideband highspeed communications, it is more important to consider the channel attenuation characteristics of microwave signals. Microwave channels in 27GHz used in B-WLL system must be considered by compensating the power attenuation due to rainfall. So, in the design of one cell, the radiation power enhancement considering rainfall attenuation has an effort on the receiver in other cell as interference. In this paper we consider the main characteristics for B-WLL systems, optimum cell radius, and serviceable limit of heavy rainfall the design of the radiation power control system in case of enhancing the power that prevents from reducing the system capacity by interference.

  • PDF

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Optimal Design of PM Wind Generator using Memetic Algorithm (Memetic Algorithms을 적용한 영구자석 풍력발전기 최적설계)

  • Park, Ji-Seong;Ahn, Young-Jun;Kim, Jong-Wook;Lee, Chel-Gyun;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.6-8
    • /
    • 2009
  • This paper presents the novel implementation of memetic algorithm with GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search), which is applied for optimal design methodology of electric machine. This hybrid algorithm has been developed for obtaining the global optimum rapidly, which is effective for optimal design of electric machine with many local optima and much longer computation time. In particular, the proposed memetic algorithm has been forwarded to optimal design of direct-driven PM wind generator for maximizing the Annual Energy Production (AEP), of which design objective should be obtained by FEA (Finite Element Analysis). After all, it is shown that GA combined with MADS has contributed to reducing the computation time effectively for optimal design of PM wind generator when compared with purposely developed GA implemented with the parallel computing method.

  • PDF

HIPI Controller of IPMSM Drive using ALM-FNN Control (적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Context-aware Based Distributed Clustering for MANET (상황인식 기반의 MANET을 위한 분산 클러스터링 기법)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.277-280
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method that the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient.

  • PDF

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

Deep neural networks trained by the adaptive momentum-based technique for stability simulation of organic solar cells

  • Xu, Peng;Qin, Xiao;Zhu, Honglei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.259-272
    • /
    • 2022
  • The branch of electronics that uses an organic solar cell or conductive organic polymers in order to yield electricity from sunlight is called photovoltaic. Regarding this crucial issue, an artificial intelligence-based predictor is presented to investigate the vibrational behavior of the organic solar cell. In addition, the generalized differential quadrature method (GDQM) is utilized to extract the results. The validation examination is done to confirm the credibility of the results. Then, the deep neural network with fully connected layers (DNN-FCL) is trained by means of Adam optimization on the dataset whose members are the vibration response of the design-points. By determining the optimum values for the biases along with weights of DNN-FCL, one can predict the vibrational characteristics of any organic solar cell by knowing the properties defined as the inputs of the mentioned DNN. To assess the ability of the proposed artificial intelligence-based model in prediction of the vibrational response of the organic solar cell, the authors monitored the mean squared error in different steps of the training the DNN-FCL and they observed that the convergency of the results is excellent.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.