• Title/Summary/Keyword: Optimum treatment condition

Search Result 692, Processing Time 0.025 seconds

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Optimization of a Process for Extraction of Petasin from Petasites japonicus Leaves by Response Surface Methodology (반응표면분석법에 의한 머위 잎의 petasin 추출공정 최적화)

  • Lee, Dong Wan;Lee, Se Yeul;Chung, Hun Sik;Choi, Young Whan;Im, Dong Soon;Lee, Young Guen
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1360-1364
    • /
    • 2013
  • Petasin extracted from Petasites japonicus leaves has been well known to be effective in the treatment of allergic asthma. This study was carried out to optimize the extraction process of petasin from P. japonicus leaves by response surface methodology (RSM). The dried powder of P. japonicus leaves was extracted at ethanol concentrations ranging from 40% to 80%, extraction rpm ranging from 125 rpm to 225 rpm, and extraction time ranging from 1 to 3 hours. The effects of the extraction conditions on the dry yield and petasin content of the extracts were investigated using a second-order Box-Behnken design. The petasin content was significantly affected by ethanol concentration, extraction rpm, and extraction time, tending to increase more with increasing ethanol concentration. The optimum condition for petasin extraction from Petasites japonicus leaves was 79.92% in ethanol concentration, 178.10 rpm in extraction rpm, and 2.06 hours in extraction time, respectively.

Effect of shelf-life extension of birch sap using high pressure processing (초고압 기술이 자작나무 수액의 저장성 향상에 미치는 영향)

  • Choi, Kyung Hwa;Kim, Sun Im;lee, Dong Uk;Jeon, Jung Tae
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2017
  • Effects of high pressure processing on physicochemical and microorganisms properties in birch sap were investigated using variable high pressure processing conditions. The viable cell counts of untreated birch sap was 4.0 log CFU, whereas high pressure processed sap were not detected. In birch sap was treated with 450 to 550 MPa, microorganisms were not detected during storage period, and physicochemical properties as well as color were slightly changed. The more processing time and pressure, its quality variations were more stable and then its optimum processing condition was determined with 120 sec at 550 MPa. The microorganisms and physicochemical properties of treated birch sap were investigated during storage at $5^{\circ}C$ and $10^{\circ}C$ for 45 and 28 days. Changes of physicochemical properties of treated birch sap were smaller than those of the untreated, but viable cell count were not detected during storage period. As for pH, $^{\circ}Brix$, and turbidity result of birch sap, quality shelf life of control and treatment were 4 and 24 days, respectively. Especially, ${\Delta}E$ value of instrumental color was untreated birch sap 4 days similar with the high pressure processed it for 28 days. These results indicated that the high pressure processing can be used as an effective method to improve the shelf life of birch sap.

Influence of Different Phosphorus Fertilizer to Barley Growth and Yield (맥류에 대한 각종 인산질 비료의 비효검정 시험)

  • Cho, C.H.;Ha, Y.W.;Hong, B.H.;Kim, D.K.;Huh, W.S.;Lee, J.S.;Kang, J.C.;Chai, J.S.;Lee, D.K.;Park, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.119-126
    • /
    • 1973
  • In order to investigate the effects of phosphorous fertilizer such as fused Phosphate, compound fertilizer and triple phosphate on barley(growth and yield at the fixed level of nitrogen and potassium, 4 level of hosphorous) has been tested at Suwon. Iri. Kwangju ani Daegu with randomized completeblock design. The results obtained could be summarized as follows. 1. In four locations. increased application of phosphorus have brought earlier maturity in barley regardless the type of fertilizer but fused phosphate considered to have more effects on stimulation of maturity of barley compare with the others. 3. Fused phosphate increased yield higher by-8kg/10a application compare with the same level of compound fertilizer and triple phosphate but there was no differences in yield at 12kg/10a phosphate but there was no differences in yield at 12kg/l0a application among the fertilizers except Kwangju and Suwon. 3. Grain weight was considerably higher in application of fused phosphate Thus are considered effects phosphate. 4. Optimum amount of phosphorous fertilizer was considered 8kg/l0a. Application of 4kg per 10a produced lower yield than 8kg and slightly or no increased yield was observed in 12kg application. 5. Among the 4kg/10a applied condition of phosphorous fertilizers, yield was decreased at fused phosphate treatment compare with the others and this fact resulted supposedly due to the lower portion of valid phosphorus in fused phosphate because of its citric acid solubility. At level of 12kg/10a application fused phosphate was considered more effective in yield increment.

  • PDF

Germination and Growth Response of Spergularia marina Griseb by Salt Concentration (갯개미자리(Spergularia marina Griseb)의 염농도에 따른 발아 및 생장 반응)

  • Jeong, Jae-Hyeok;Kim, Sun;Lee, Jang-Hee;Choi, Weon-Young;Lee, Kyung-Bo;Cho, Kwang-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • This study was conducted to investigate the germination and growth response by Salinities of Spergularia marina Griseb grown in the western coastal region in South Korea. The germination was investigated for 10 days at temperature $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ in order to examine the germination of Spergularia marina Griseb by NaCl concentration 0.0, 0.3, 0.5, 1.0, 2.0%. The germination of NaCl concentration 0.0~1.0% was 90% over at $15^{\circ}C$ treatment, but the germination of NaCl concentration 2.0% was 0% at all temperature treatments. To identify the growth response of Spergularia marina Griseb according to the salinity, Spergularia marina Griseb was cultivated for 8 weeks in Hoagland culture medium and sea water. In nutrient solution culture, growth was best in NaCl 50mM among 0~400 mM concentrations and in 0, 12.5, 25, 50, 100% of sea water, growth was best in 12.5% (dilution ratio with fresh water) treatment. Spergularia marina Griseb's inorganic component contents according to salinity showed that $Na^+$ content increased, but contents of $K^+$, $Ca^+$, $Mg^+$ decreased. As a result, appropriate condition for Spergularia marina Griseb's germination is considered to be maintained at $15^{\circ}C$ and in less than NaCl 1.0% of salinity. When nutrient solution culture, NaCl 0.3% of treatment level is considered to be the optimum salinity.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Experimental Studies on the Optimum Pasteurization Condition of the Cow's Milk Produced in Korea III. The Changes in Chemical Composition and Microbiological Aspects of High Temperature Pasteurized Milk (한국산(韓國産) 우유(牛乳)의 적정(適正) 살균조건(殺菌條件)에 관(關)한 실험적(實驗的) 연구(硏究) III. 고온살균처리(高溫殺菌處理)에 의한 우유(牛乳)의 화학적(化學的) 조성(組成) 및 미생물학적(微生物學的) 성상(性狀)의 변화(變化))

  • Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.309-317
    • /
    • 1987
  • The raw milk produced in Korea was heated at $70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, $85^{\circ}C$, $90^{\circ}C$, $95^{\circ}C$ and $100^{\circ}C/15sec.$. The changes in chemical composition and microbiological aspects of the milk were summarized as following results: 1. In high temperature pasteurized milks as the heat treatment increased, pH value decreased but protein, fat, lactose and ash did not show significant changes in their contents while casein nitrogen and non-protein nitrogen increased but non-casein nitrogen and filterable nitrogen decreased in their contents. 2. Calcium content of raw milk decreased from 119.79mg/100g to 111.86mg/100g at $75^{\circ}C$ and to 106.24mg/100g at $100^{\circ}C$. Vitamin C decreased from $1.37mg/100m{\ell}$ of raw milk to $1.15mg/100m{\ell}$ at $75^{\circ}C$ and $0.94mg/100m{\ell}$ at $100^{\circ}C$. Artificial digestibility increased as the heat treatment got higher. 3. Viable bacteria counts decreased from $9.0{\times}10^3/m{\ell}$ at $75^{\circ}C$ to $3.4{\times}10^2/m{\ell}$ at $100^{\circ}C$. Coliforms were not found at $70^{\circ}C$ and thermoduric bacteria, thermophiles, psychrotrophic bacteria, mould and yeast decreased rapidly as the heat treatment increased. 4. The results of Keeping quality test for high temperature pasteurized milk showed that the' milks preserved at $25^{\circ}C$ and $37^{\circ}C$ were clotted just after 1 day but the milk preserved at $4^{\circ}C$ showed good shelf life which did not have any deterioration in titratable acidity, microorganisms and com positions.

  • PDF

Mathematical Transformation Influencing Accuracy of Near Infrared Spectroscopy (NIRS) Calibrations for the Prediction of Chemical Composition and Fermentation Parameters in Corn Silage (수 처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 및 발효품질의 예측 정확성에 미치는 영향)

  • Park, Hyung-Soo;Kim, Ji-Hye;Choi, Ki-Choon;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation ($R^2{_{cv}}$) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, $R^2{_{cv}}$, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy ($R^2{_{cv}}$ 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.

A Study on the optimum drying condition of sewage sludge cake using continuous microwave full scale dryer (연속적 마이크로파 Full Scale 건조장치를 이용한 하수슬러지 케익의 최적 건조조건 연구)

  • Ha, Sang-An;Jung, Wang-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.47-56
    • /
    • 2008
  • The objective of this research is to evaluate the optimum recycling methods for the sewage sludge cakes at different microwave power-settings and for different periods of time. The dehydrated sewage sludge cakes used in this study was obtained from N wastewater treatment plan in the P City. The beginning drying processes were carried out in a microwave oven with 2,450 MHz frequency and power ranges of 1kW to 4 kW. The continuous conveyer drying system was also operated with 2,450 MHz frequency and power setting, ranging from of 1 kW to 6 kW. Initial moisture content of the sewage cake is 78~80%, and the moisture content decreased rapidly up to 0.2~2(wt%) within short periods due to breaking the cell walls. This study is also conducted to evaluate the characteristics of sewage sludge cakes with respect to important physical parameters effect on the thermal kinetics for evaporation water in the sludge which are operation times, moisture contents, drying rates, input amounts, flow rates and calorific values. It takes 60 minutes and 120 minutes to reach the critical moisture contents with power setting of 4 kW for 3kg/min and 6kg/min of the flow rates respectively. It takes 120 minutes and 110 minutes to reach the critical moisture contents with flow rates of 2.5 cm/min and sludge input of 6kg/min for the power settings of 4 kW and 6 kW respectively. The most effective value of the power for drying the sludge is 4 kW. Operation with 6kg/min and 4kW on 2cm of the sludge thickness can be effectively and inexpensively to reach the critical moisture contents, when you compare 2cm of the sludge thickness with 1cm and 3cm of the sludge thickness.

  • PDF

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.