• Title/Summary/Keyword: Optimum system

Search Result 5,281, Processing Time 0.04 seconds

Ratio Optimization Between Sizes of Components of Heat Recovery Steam Generator in Combined Cycle Gas Turbine Power Plants (복합사이클 발전플랜트 폐열회수 보일러의 구성요소 크기비의 최적화)

  • In, Jong-Soo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • This paper proposes a new approach to find the optimum ratios between sizes of the heat exchangers of the heat recovery steam generator (HRSG) system with limited size to maximize the efficiency of the steam turbine (bottom) cycle of combined cycle power plants (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen and the optimum evaporation temperature was obtained corresponding to the condition of the maximum useful work. The results show that the optimum evaporation temperature based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of size (NTU) ratios between the heat exchangers on the inlet gas temperature, which is another important factor in determining the optimum condition once overall size of the heat recovery steam generator is given. The present approach turned out to be a useful tool for optimization of the singlestage HRSG systems and can easily be extended to multi-stage systems.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System (SNCR-SCR 하이브리드 시스템의 질소산화물 제거 특성)

  • Cha, Jin Sun;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.658-663
    • /
    • 2011
  • The SNCR-SCR (selective non-catalytic reduction-selective catalytic reduction) hybrid system is an economical NOx removal system. In this study, the effect of the operating parameters of the SNCR-SCR hybrid system on NOx removal efficiency was investigated. When the SNCR reactor was operated at a temperature lower than the optimum temperature ($900{\sim}950^{\circ}C$), an additional NO removal is obtained basesd on the utilization of $NH_3$ slip. On the other hand, the SNCR reactor operated above the temperature resulted in no additional NO removal of SCR due to decomposition of $NH_3$. Therefore, the SNCR process should be operated at optimum temperature to obtain high NO removal efficiency and low $NH_3$ slip. Thus, it is important to adjust NSR (normalized stoichiometric ratio) so that $SR_{RES}$ can be maintained at an appropriate level.

Optimum Cam Profile Design of VTR Deck Using the Response Stuface Analysis (반응표면분석법을 이용한 VTR Deck 캠의 최적형상 설계)

  • Han, Hyeong-Seok;An, Hyeong-Jin;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.788-795
    • /
    • 1996
  • In this paper, and optimum profile of a cam being used in a VTR Deck mechanism is designed by the response surface analysis. The objective function of the design is to reduce driving torque of the pinch roller system that is used to compress video tape to the capstan motor axia. The pinch roller system that will be designed is modeled using the general purpopse mechanism analysis program DADS. The computer model is compared with the physical system for reliability. A model function to represent relationship between design variables and the objective function is estimated by the response surface analysis. Once the model function is reliably estimated the optimal design is carried out using the model function and each design variable's boundaries. To verify improvement of the pinch roller system, a prototype for the pinch rooler system is made and tested. From the test result, an optimum cam profile to resuce driving torque of the pinch roller system is verified.

A Fuzzy Logical Optimal Efficiency Control of Permanent Magnet Synchronous Motor (PMSM의 퍼지 로직 최적 효율 제어)

  • Zhou, Guang-Xu;Lee, Dong-Hee;Ahm, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.97-99
    • /
    • 2007
  • This paper presents a fuzzy logical control method to implement an on-line optimum efficiency control for Permanent Magnet Synchronous Motor. This method real-timely adjusts the output voltage of the inverter system to achieve the optimum running efficiency of the whole system. At first, the input power is calculated during the steady state in the process of efficiency optimizing. To exactly estimate the steady state of the system, this section needs check up the speed setting on timely. The second section is to calculate input power of dc-bus. The exact measurement of the voltage and current is the vital point to acquire the input power. The third section is the fuzzy logic control unit, which is the key of the whole drive system. Based on the change of input power of dc-bus and output voltage, the variable of output voltage is gained by the fuzzy logical unit. With the on-line optimizing. the whole system call fulfill the minimum input power of dc-bus on the running state. The experimental result proves that the system applied the adjustable V/f control method and the efficiency-optimizing unit possesses optimum efficiency, and it is a better choice for simple variable speed applications such as fans and pump.

  • PDF

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Study on Two-Coil and Four-Coil Wireless Power Transfer Systems Using Z-Parameter Approach

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyung Soo
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.568-578
    • /
    • 2016
  • A wireless power transfer (WPT) system is usually classified as being of either a two-coil or four-coil type. It is known that two-coil WPT systems are suitable for short-range transmissions, whereas four-coil WPT systems are suitable for mid-range transmissions. However, this paper reveals that the two aforementioned types of WPT system are alike in terms of their performance and characteristics, differing only when it comes to their matching-network configurations. In this paper, we first find the optimum load and source conditions using Z-parameters. Then, we estimate the maximum power transfer efficiency under the optimum load and source conditions, and we describe how to configure the matching networks pertaining to both types of WPT system for the given optimum load and source conditions. The two types of WPT system show the same performance with respect to the coupling coefficient and load impedance. Further, they also demonstrate an identical performance in the two cases considered in this paper, that is, a strong-coupled case and a weak-coupled case.

An Introduction for Optimum Route Assessment System (최적 항로 평가 시스템의 개발 및 적용에 대한 소개)

  • Park, Gun-Il;Lee, Jin-Ho;Kim, Mun-Sung;Bang, Chang-Seon;Choi, Jae-Woong;Choi, Kyong-Soon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.189-192
    • /
    • 2006
  • For the safety and efficiency of voyage, the demand for decision support system in route planning has been increasing with the advance of information technology and the increase of oil price. According to the needs, the authors developed an optimum route assessment system. The system assists an navigator to make an optimum route plan with respect to sailing time and fuel consumption using weather forecast data. Also, the system provides the quantitative estimation for the various safety indexes including parametric roll and etc. Using these functions, a navigator is able to design the safe and efficient voyage plan. The effectiveness of system were verified by the operation during actual voyages and the simulation studies.

  • PDF

Production of NADP by Immobilized Brevibacterium ammoniagenes and ATP- regenerating System of Acetate Kinase (고정화 Brevibacterium ammoniagenes와 Acetate Kinase의 ATP생성계에 의한 NADP생산)

  • 조정일
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.158-168
    • /
    • 1993
  • For the conversion of WAD to NADP, Immobilized Brevibacterium ammoniagenes cells with NAD kinase was coupled with ATP-generating system by acetate kinase. The membrane permeability of B. ammoniagenes was improved by toluene treatment of cells. The toluene treated B. ammoniagenes cells were immobilized for stable enzyme activity. Partially purified acetate kinase was used in the reaction system. The optimum conditions for the efficient conversion of UAD to WADP by energy-coupled system were investigated. B. ammoniagenes cells treated with toluene for the Improvement of membrane permeability showed 4.5 fold improved permeability in the conversion of NAD to NADP compared with Intact cells. 3% k-carrageenan as the immobilization matrix of B. ammoniagenes showed the best efficiency for the conversion of NAD to NADP The optimum conditions for the WAR to WARP conversion reaction coupled nth ATP-generating system were 10mM acetylphosphate, 5mM ADP 200mM inorganic phosphate, 10mM MgCl2, 250mg/ml Immobilized cells, 49.3mUnit/ml acetate kinase, pH 7.5 and 37$^{\circ}C$. Under the optimum conditions, 72% of 5mM(340mg/ml ) NAD was converted to UADP In 12 hours.

  • PDF

Method for Adjusting Single Matching Network for High-Power Transfer Efficiency of Wireless Power Transfer System

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyungsoo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.962-971
    • /
    • 2016
  • A wireless power transfer (WPT) system is generally designed with the optimum source and load impedance in order to achieve the maximum power transfer efficiency (PTE) at a specific coupling coefficient. Empirically or intuitively, however, it is well known that a high PTE can be attained by adjusting either the source or load impedance. In this paper, we estimate the maximum achievable PTE of WPT systems with the given load impedance, and propose the condition of source impedance for the maximum PTE. This condition can be reciprocally applied to the load impedance of a WPT system with the given source impedance. First, we review the transducer power gain of a two-port network as the PTE of the WPT system. Next, we derive two candidate conditions, the critical coupling and the optimum conditions, from the transducer power gain. Finally, we compare the two conditions carefully, and the results therefore indicate that the optimum condition is more suitable for a highly efficient WPT system with a given load impedance.