• Title/Summary/Keyword: Optimum removal pH

Search Result 374, Processing Time 0.024 seconds

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.

Estimation of the Optimum Factor of the Struvite Crystalization for the Nitrogen and Phosphorus Removal in WWTP (폐수내 질소 및 인 제거를 위한 struvite 결정화 최적조건 도출)

  • Kim, Ji Yeon;Moon, Yong Taik;Seo, In Seok;Kim, Byung Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.745-753
    • /
    • 2007
  • By struvite and hydroxyapatite crystallization, was high concentration of nitrogen and phosphorus in wastewater simultaneously. Particularly, removal of nitrogen and phosphate for crystallization have been applied to landfill leachates and animal wastewater. The purpose of this study is to decide the optimum struvite crystallization factors, sequence of $Mg^{2+}$ addition, pH control and the molar ratio of $Mg^{2+}$ over $PO_4^{3-}$. In conclusion, dosage of the magnesium followed by pH control formed magnesium hydroxide, so pH was decreased. Therefore, pH adjustment should followed by after magnesium dosage and then pH should be adjusted to 11. Over pH 10, it was not good for struvite crystallization efficiency by side reaction. Following of the $Mg^{2+}$ and the $PO_4^{3-}$ are dosed excessively, the removal efficiency of the $NH_4^+$ increased. A molar ratio of $Mg^{2+}:NH_4^+:PO_4^{3-}$, 1.3:1:1.3 was the most on effective for $NH_4^+$ removal at pH 9.5. But for the perfect removal $NH_4^+$, it is thought to be that molar ratio should be 2:1:2.

The Effects of pH and Dosages According to Qualities of Raw Waters and Basicity of Coagulants (원수 수질특성과 응집제 염기도에 따른 응집 pH 및 주입량의 영향)

  • Park, Noh-Back;Lee, Bum;Tian, Dong-Jie;Lee, Young-Ju;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.581-593
    • /
    • 2010
  • The objectives of this study were to investigate the effects of raw water pH and basicity of coagulants on turbidity removal with several raw waters having different level of turbidity, alkalinity and pH. Raw waters were sampled from M, S and B water treatment plants(WTP) located at Miryang, Nakdong, Han river, respectively. Six coagulants which have different levels of basicity and aluminum contents were used for this evaluation. High basicity of the coagulant helped to properly control coagulation processes for treating turbid and low alkali raw water. It was difficult for operators to determine optimum coagulant dose for high basicity coagulants, since residual turbidity tended to decrease continuously as coagulant dose increased. Turbidity removal efficiencies with high basicity coagulants(E and F) were higher than the other coagulants at ambient pH for the M WTP. Turbidity removal efficiencies, however, at adjusted pH 7.0 showed similar among six coagulants. Residual turbidity kept low at excess dosages with high basicity coagulants. Optimum coagulant dosages at adjusted pH 7.0 showed higher than those at ambient pH in M WTP. On the contrary in B WTP, optimum coagulant dosage at ambient pH were higher than that at adjusted pH 7.0.

Characteristics of Lead Removal by Methanotrophic Biomass (메탄자화균에 의한 납의 제거 특성)

  • 이무열;양지원
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.444-451
    • /
    • 2000
  • Nonliving methanotrophic biomass was used as biosorbent to remove lead which is one of representative pollutants in metal-bearing wastewater. Solution pH, maximum uptake, biosorbent dose and ionic strength were considered as major factors for adsorption experiments. The optimum pH range for lead removal was increased 3.8∼11.0 for methanotrophic biomass compared to biosorbent-free control, pH of 8.4∼11.2. Removal efficiency of lead by methanotrophic biomass was pH dependent, but less sensitive than that of control. In isotherm experiments with 0.2g biosorbent/L at initial solution pH 5.0, methanotrophic biomass took up lead from aqueous solutions to the extent of 1085 mg/g biomass. Removal amount of lead increased with an increase of biomass dose. According to biomass dose for initial 1000 mg Pb/L at initial pH 5.0, the optimum amount of biomass for maximum lead removal per unit methanotrophic biomass was 0.2 g biomass/L. As a result of scanning electron microscope (SEM) micrographs equipped with energy dispersive spectroscopy (EDS), lead removal by methanotrophic biomass seemed to be through adsorptions on the surface of methanotrophic biomass and exopolymers around the biomass. EDS spectra confirmed that lead adsorption appeared on the biomass and exopolymers that may be effective to lead removal comparing before and after contact with lead. Removal efficiency of lead was slightly affected by ionic strength up to 2.0 M of NaCl and NaNO$_3$respectively.

  • PDF

Effects of Polyelectrolyte Dosage, Kaoline Particles and pH on Flocculation of Humic Acid by Catonic Polyelectrolytes

  • Kam, Sang-Kyu;Kim, Dae-Kyoung;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.861-870
    • /
    • 2003
  • Using a simple continuous optical technique, coupled with measurements of zeta potential, the effects of polyelectrolyte dosage, kaoline particles and pH on flocculation of humic acid by several cationic polyelectrolytes, have been examined. The charge density of a polyelectolyte is important in determining the optimum dosage and in the removal of humic acid. The optimum dosage is less for the polyelectrolytes of higher charge density and is the same regardless of the presence of kaoline particles of different turbidity. At the dosage, the removal of humic acid is higher for the polyelectrolytes of higher charge density and the zeta potential of humic acid approaches to near zero, With increasing pH of humic acid, the optimum dosage increases and the flocculation index value obtained at the dosage decreases in the following pH 7 > pH 5 > pH 9, regardless of polyelectrolytes.

Characteristics of Apparent Molecular Weight Distribution and Removal of DOC by Coagulation and Sedimentation Process with Polyaluminum Chloride in Nakdong River Water (응집·침전 공정에서 PAC를 이용한 낙동강 원수의 DOC 제거 및 분자량 분포 특성)

  • Kim, Yeong-Tak;Kim, Eun-Hee;Rhim, Jung-A;Yoon, Jeong-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of present work is to evaluate the optimum coagulation conditions in order to decrease dissolved organic carbon(DOC) and turbidity at different polyaluminum chloride dosage and pH from Nakdong River water. This studies were carried out to examine distribution on apparent molecular weight(AMW) of DOC in the Nakdong River water and its coagulation-sedimentation water. On the basis of jar tests, at the optimum coagulation pH in order to decrease DOC and turbidity were pH 5.0~6.0 and optimum dosage of polyaluminum chloride were 10~15mg $Al_2O_3/L$. The removal percentage of DOC and UV-254 absorbance were 35~40%, 45~60%, respectively. In pilot plant, at the optimum coagulation pH in order to decrease DOC and turbidity were 5.0-6.5, and the removal percentage of DOC were 30~45%. Distributions of AMW in the Nakdong River, less than 6,800dalton were 60.7% 6,800~11,000dalton were 32.8%, more than 11,000dalton were 6.4%. When the polyaluminum chloride dosage was 12~20mg/L, the removal percentages of each AMW for AMW of Nakdong River water, less than 6,800dalton were 25~28%, 6,800~11,000dalton were 65~68% more than 11,000dalton were 10~60%.

  • PDF

Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

  • Ali, Esam H.;Hashem, Mohamed
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.135-144
    • /
    • 2007
  • The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees, was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum bio-mass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn, Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature $20^{\circ}C$ in case of S. delica while it was $25^{\circ}C$ for T. viride. Incubation of T. viride at higher temperatures ($30^{\circ}C\;and\;35^{\circ}C$) enhanced the removal efficiency of Pb and Cd than low temperatures ($15^{\circ}C\;and\;20^{\circ}C$) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals.

Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process - (화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 -)

  • Kim, Jong Boo;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.234-240
    • /
    • 2000
  • The efficiency of Photocatalytic Oxidation Process were investigated for the treatment of Aquatic Humic Substances (AHS). In UV-only system, pH 7-9 was the optimum pH range for TOC removal, and alkali range was the optimum pH for absorbance decrease. In UV/$TiO_2$ system, the optimum $TiO_2$ dosage was 50ppm and over 50ppm of $TiO_2$ dosage was not effective for removal of AHS. In UV/$H_2O_2$ system, optimum $H_2O_2$ dosage was 20mM, when over 20mM dosage, removal of TOC (Total Organic Carbon) and absorbance was decreased. Radical scavenger affected on the photo-oxidation of AHS. Removal rate of TOC and absorbance was decreased by addition of carbonate ions and TOC removal was more effected than that of absorbance.

  • PDF

Optimum Condition for Fluoride Removal Prior to the Application of Struvite Crystallization in Treating Semiconductor Wastewater (Struvite 결정화를 이용한 반도체 폐수처리 시 불소제거를 위한 최적 조건)

  • An, Myeong Ki;Woo, Gwi Nam;Kim, Jin Hyung;Kang, Min Koo;Ryu, Hong Duck;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.916-921
    • /
    • 2009
  • This study was aimed to both enhance the fluoride removal and to reduce the phosphorus removal in treating semiconductor wastewater using $Ca(OH)_2$ at low pH so as to facilitate struvite crystallization reaction. The struvite crystallization could be introduced after fluoride removal by retaining the phosphorus source. As the results, the method applied in this study achieved high fluoride removal efficiency (about 91%) with retardation of phosphorus removal at pH 4, compared to conventional methods where the removal of fluoride and phosphorus were done at pH 11. Therefore, the fluoride removal at low pH would contribute to the enhancement of nitrogen and phosphorus removals in a consecutive struvite crystallization reactor. Treatment of semiconductor wastewater at low pH using $Ca(OH)_2$ also had lower (about 20%) water content of precipitated sludge compared to conventional method. As the molar ratio of Ca to F increased the removal efficiencies of fluoride and phosphorus increased. Although the amount of seed dosage didn't affect the removal of fluoride and phosphorus, its increase reduced the water content of precipitated matter. Finally, considering consecutive struvite reaction, the optimum condition for the removal of fluoride and phosphorus was as follow: pH: 4, the molar ratio of Ca:F: 1:1.

The Effects of Turbidity and pH on the Removal of Cryptosporidium and Giardia by Coagulation Process (원수 탁도와 pH 변화가 혼화응집침전 과정에서 원생동물과 탁질 제거에 미치는 영향)

  • Chung, Hyen-Mi;Park, Sang-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • The removal of protozoa in the coagulation process was evaluated under the different pH and turbidity using the jar test after the addition of polyaluminium chloride (PAC) as a coagulant. Two well-known protozoa of Cryptosporidium parvum and Giardia lamblia were tested at the same time with turbidity, the critical water quality parameter of the water treatment process. Both protozoa were removed about 1log (and up to 2log) at the optimum injection of PAC. The source water turbidity and pH affected the removal of protozoa and turbidity. At neutral and alkaline pH, 1.3-1.7log removal of protozoa for low turbid water with 5NTU, and 1.6-2.3log removal for high turbid water with 30NTU were achieved. However, at acidic pH, maximum 0.8-1.0log and 1.1-1.2log were removed for low and high turbid water, respectively, at the optimum PAC injection of 15mg/L. The relation of protozoa and turbidity removals were expressed as the 1st order equation (significantly positive relation) in the most of the tested conditions. In addition, the relation of protozoan removals with residual turbidity were also expressed the 1st order equation (significantly negative relation), although the significance of the equations were reduced at acidic pH. Therefore, residual turbidity could be a good index of efficient protozoan removal in the coagulation process, probably except at the low pH condition.