• Title/Summary/Keyword: Optimum processing design

Search Result 229, Processing Time 0.024 seconds

A Study on the Skirt Size Selection of a Composite Pressure Vessel using Optimum Analysis Technique (최적화 해석 기법을 이용한 복합재 압력용기의 스커트 치수 선정에 관한 연구)

  • Kim, Jun-Hwan;Jeon, Kwang-Woo;Shin, Kwang-Bok;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.403-407
    • /
    • 2012
  • The purpose of this study is to find the optimum skirt size for a composite pressure vessel using optimum analysis technique. The size optimization for skirt shape of a composite pressure vessel was conducted using sub-problem approximation method and batch processing codes programmed by APDL(ANSYS Parametric Design Language). The thickness and length of skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as weight and displacement of skirt part, respectively. The numerical results showed that the weight of skirt of a composite pressure vessel would be saved by maximum 4.38% through the size optimization analysis for the skirt shape.

  • PDF

Optimum Life Cycle Cost Design of High-Speed Railway Steel Bridges (고속철도 강교량의 총기대비용 최적설계)

  • 조효남;민대홍;조준석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, an optimum design model for minimizing the life-cycle cost (LCC) of high-speed railway steel bridges is proposed The point is that it takes into account service life process as a whole, and thus the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs, expected strength failure costs and expected serviceability failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. By processing the optimum LCC design the effective and rational basis is proposed for calculating the total LCC and the sensitivity analysis of LCC is peformed. Based on a numerical example, it may be positively stated that the optimum LCC design of high-speed railway steel bridges proposed in this study provides a lot more rational and economical design, and thus the proposed approach will expedite the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Blank Design for Sheet Metal Product Based on Direct Design Method (직접설계법에 의한 박판부품의 초기형상설계)

  • 윤정환;김상국;정관수;연의정
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF

Study on the Analysis of Optimum Capacity of Rice Processing Complex (미곡종합처리장(米穀綜合處理場)의 적정규모분석(適正規模分析) 연구(硏究))

  • Chang, D.I.;Shin, M.G.;Kwon, T.W.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.16-21
    • /
    • 1987
  • This study was conducted to develop a logic of analysis and to analyze the optimum capacity of rice processing complex (RC) which would be used as a basic design data for RPC. For the above objectives, a case study was carried out for Nonsahn County, Chungnam Province. The optimum capacity was analyzed by the simulation of the PPSARR (computer program) according to the collectable amount of rough rice. The significance of that study was the development of a logic for the analysis of optimum capacity of RPC. The results show that the optimum capacities of RPC arc 2 ton/h for the collectable amount of rough rice of up to 3,000 ton, 4 ton/h for up to 9,000 ton, 5 ton/h for up to 12,000 ton, 8 ton/h for up to 15,000 ton, 10 ton/h for above 15,000 ton. The cons of the post-harvest systems including the RPC of optimum capacity are 65.50-93.78 thousand Won/ton and they are more economical than the custom of 106.5 thousand Won/Ton.

  • PDF

A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells (타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

An Optimum Design of Replication Process to Improve Birefringence, Radial-tilt and Land-Groove Structure in DVD-RAM Substrates (DVD-RAM 기판의 복굴절, Radial-tilt 및 전사성 향상을 위한 사출압축성형공정 최적화)

  • Lee, Nam-Seok;Sung, Ki-Byung;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.438-444
    • /
    • 2001
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was found that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

  • PDF

Preliminary Design of a Ship by the Knowledge-Based Optimum Design System (지식기반 최적설계시스템에 의한 선박 초기설계)

  • Dong-Kon Lee;Soo-Young Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.161-172
    • /
    • 1996
  • Although conventional computer programs use efficient and precise optimization algorithms, they can not emulate the problem solving capabilities of human experts. A design optimization process involves a number of tasks which require human expertise and experience. Traditional optimization systems have concentrated on numerical aspects of a design process and have not been successful in integrating the numerical parts with human expertise. On the other hand, most knowledge-based systems focus on symbolic reasoning and have been little concerned with the numerical processes. The objective of this paper is to develop a knowledge-based multiobjective optimum design system which has the capabilities of knowledge processing and numerical computation by integrating the multiobjective optimization method and the knowledge-based system. The knowledge-based system for symbolic processing is developed. Rules for knowledge representation and the inference mechanism of the system are written in LISP. The knowledge-based multiobjective optimum design system is finally developed by integrating the multiobjective optimization method and the knowledge-based system by applying shell programming technique. The system is applied to an optimum design model of a LNG carrier in the preliminary design stage. It is found that the system well simulate design variables and objective functions of the design model.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정(井)자형 Sub-frame의 블랭크 설계)

  • Kim, Jong-Yop;Kim, Nak-Soo;Heo, Man-Seong
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.260-273
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shaped and target contour shape into account. Based on the method a computer program composed of blank design module FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modification. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed, The thickness distribution and the level of punch load is improved. Also the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum Working Condition of Surface Roughness for End-Milling Using Taguchi Design (다구찌 기법을 이용한 엔드밀 가공시 최적 표면거칠기를 위한 가공조건선정)

  • 이상재;배효준;전태옥;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.553-556
    • /
    • 2003
  • End-milling have been used in the industrial world because it is very effective to the manufacture of mechanical parts with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study carried to decide the optimum cutting condition for surface roughness and rapid manufacturing time using design of experiment and ANOVA. From the results of experimentation, surface roughness have an effect on cutting direction, spindle speed and depth of cut. And then the optimum condition used Taguchi design is upward cutting in cutting direction, 600rpm in spindle speed, 240mm/min feed rate, 2mm in axial depth of cut and 0.25mm radial depth of cut. By using design of experiment, it is effectively represented shape characteristics of working surface in end-milling.

  • PDF

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF