• Title/Summary/Keyword: Optimum heat-treatment temperature

Search Result 246, Processing Time 0.031 seconds

Preparation and Adsorption-photocatalytic Activity Evaluation of TiO2-Coconut Shell Powder Composite (TCSPC) (TiO2-Coconut Shell Powder Carbon 복합체 (TCSPC) 제조 및 흡착 광촉매 산화 활성 평가)

  • Lee, Min Hee;Kim, Jong Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • A novel $TiO_2$-Coconut Shell Powder Composite (TCSPS), prepared by the controlled sol-gel method with subsequent heat treatment, was evaluated as an innovative photocatalytic absorbent for the removal of methylene blue. Optimal preparation conditions of TCSPC were obtained by a response surface methodology and a central composite design model. As compared with the results obtained from one-factor-at-a-time experiments, the values were approximated to the nearest condition of these values and the following experimental parameters were set as the optimum : $600^{\circ}C$ calcination temperature and 20 g of coconut shell powder loading amount.

A Study on the Calcium Ion Extraction for PCC Production (PCC 제조를 위한 칼슘이온 추출 조건에 관한 연구)

  • Lee, Ye-Hwan;Lee, Sang Hyun;Hwang, In-Hyuck;Choi, Sung-Yeol;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2018
  • In this study, we performed various extraction condition experiments such as types and concentrations of extractants, amounts of extraction sources, pretreatment processes, to optimize the calcium ion extraction for precipitated calcium carbonate (PCC) production. CaO was used as a calcium extraction source, The extraction amount of calcium ions and the particle size of CaO were determined by ICP and SEM results. As a result, 100% calcium ion was extracted when 2 M hydrochloric acid was used as an extractant, and the optimum amount of the extraction source was 6 g. On the other hand, it was confirmed that the reaction time, reaction temperature, particle milling and heat treatment process had no significant effect on the calcium ion extraction amount.

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

Characteristics and Action Pattern of Alikaline Lipase from Serratia liquefaciens AL-11 (Serratia liquefaciens AL-11이 생산하는 Alkaline Lipase의 특성 및 작용양상)

  • Choi, Cheong;Kim, Tae-Wan;Ahn, Bong-Jeon;Kim, Yung-Hwal;Son, Jun-Ho;Kim, Sung;Choi, Hee-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.87-91
    • /
    • 1996
  • The optimum temperature and pH for the enzyme activity were 45$^{\circ}C$ and 10.0, respectively. The enzyme was stable in a pH range of 5 to 10, and 62% of its activity was lost on heat treatment of 60$^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by $Fe^{2+},\;Zn^{2+}\;and\;Pb^{2+}$, and slightly activated by $Mn^{2+}\;and\;Ca^{2+}$. ${\gamma}$-Chloromercuribenzoic acid, 2,4-dinitrophenol and $H_{2}O_{2}$ did not show inhibitroy effect on the lipolytic activity of the alkaline lipase but ethylenediaminetetraacetic acid inhibited the enzyem activity. This suggested that the enzyme have metal group in its active site. Sodium salts of bile acids stimulated the enzyme activity. Analysis of hydrolyzates of olive oil after the reaction revealed that Serratia liquefaciens AL-11 produced non-specific lipolytic enzyme.

  • PDF

Cloning, Expression, and Characterization of a Hyperalkaline Phosphatase from the Thermophilic Bacterium Thermus sp. T351

  • Choi Jeong-Jin;Park Jong-Woo;Shim Hye-Kyung;Lee Suk-Chan;Kwon Moo-Sik;Yang Joo-Sung;Hwang Heon;Kwon Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.272-279
    • /
    • 2006
  • The gene encoding Thermus sp. T351 alkaline phosphatase (T351 APase) was cloned and sequenced. The gene consisted of 1,503 bp coding for a protein with 500 amino acid residues including a signal peptide. The deduced amino acid sequence of T351 APase showed relatively low similarity to other Thermus APases. The T351 APase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21 (DE3). The expressed enzyme was purified by heat treatment, and $UNO^{TM}$ Q and $HiTrap^{TM}$ Heparin HP column chromatographies. The purified enzyme exhibited high activity at extremely alkaline pHs, reaching a maximum at pH 12.0. The optimum temperature of the enzyme was $80^{\circ}C$, and the half-life at $85^{\circ}C$ was approximately 103 min. The enzyme activity was found to be dependent on metal ions: the addition of $Mg^{2+}$ and $CO^{2+}$ increased the activity, whereas EDTA inhibited it. With p-nitrophenyl phosphate as the substrate, T351 APase had a Michaelis constant ($K_{m}$) of $3.9{\times}10^{-5}M$. The enzyme catalyzed the hydrolysis of a wide variety of phosphorylated compounds.

Purification and Characterization of Fibrinolytic Enzyme Produced by Bacillus subtilis K7 Isolated from Korean Traditional Soy Sauce (한국재래간장 발효균 Bacillus subtilis K7 유래의 혈전용해 Protease의 정제 및 특성)

  • Kim, Doo-Young;Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • An alkaline fibrinolytic protease-producing bacteria was isolated front Korean traditional soy sauce and identified as Bacillus subtilis K7 from the results of analyses of its morphological and physiological properties, $API^{\circledR}$, and Biolog system. The enzyme was purified by 75% ammonium sulfate fractionation, QAE-Sephadex anion and SP-Sephadex cation exchange column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enByme was 233.9 unit/mg protein and the yield of enzyme was 3.8%. The homogeneity of the purified enzyme was confirmed by polyacrylamide gel electrophoresis. Molecular mass of the enzyme was estimated about 21,500 Da by SDS-polyacrylamide get electrophoresis and gel chromatography. The optimum temperature and pH for the enzyme activity were $40^{\circ}C$ and 9.0, respectively. The enzyme was stable in a pH range of 5.0 to 12.0, and 60% of its activity was lost on heat treatment at $50^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by the presence of $Fe^{2+},\;Ag^{2+},\;Cu6{2+}$, iodoacetate, ethylene diamine tetraacetic acid (EDTA), and trans-1,2-diaminocycloheane-N,N,N',N'-tetraacetic acid (CDTA). The results indicates that the enzyme requires a metal ion for its enzymatic activity.

Purification and Some Properties of the polyphenol Oxidase form Ascidian, Halocynthia roretzi

  • Jeon, Byeong-Jun;Lee, Kang-Ho;Ryu, Hong-Soo;You, Byeong-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.111-116
    • /
    • 1996
  • Polyphenol oxidase(PPO) isolated from the crude extract of ascidian, Halocynthia roretzi, showed higher affinity for catechol than tyrosine or DL-DOPA. Successful enzyme assay could be performed at $25^{\circ}C$, 10min. by mixing 0.2ml of crude enzyme extract with 2.8ml of 0.13M catechol in 0.1M sodium phosphate buffer(pH 6.4). The specific activity of PPO which had been purified with a combination of ammonium sulfate treatment, ion exchange chromatography on DEAE-cellulose, and gel filtration on Sepharose 6B was 13-fold disc gel electrophoresis. The activity of PPO was stable from pH 5.0 to 8.0 and showed the peak activity at pH 6.4 .The optimum reaction temperature for PPO oxidation on catechol was 35$^{\circ}C$ and those enzyme were heat stable up to 4$0^{\circ}C$. Molecular weigth of the enzyme was estimated about 170kDa. One molecule was found to be composed of gour subunits. Two of them had molecular weigh of 55kDa and the others 30kDa. The {TEX}$K_{m}${/TEX} values, {TEX}$V_{max}${/TEX} and catalytic efficiency({TEX}$V_{max}${/TEX}/{TEX}$K_{m}${/TEX}) for catechol were 0.12mM, 2.5mM/liter/min. and {TEX}$0.18min^{-1}${/TEX} respectively. The substrate affinity and electrophorectic pattern suggested that the enzyme of ascidian was considered to be not tyosine but catechol oxidase.

  • PDF

Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor (Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구)

  • Jin, Chang-Soo;Lee, Yong-Sung;Shin, Kyung-Hee;Kim, Jong-Huy;Yoon, Soon-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Capacitance of a hybrid capacitor that has characteristics of both electrolyte capacitor and supercapacitor is determined by anode surface covered with oxide layer. In this study, optimal condition processes for anode to fabricate a high voltage hybrid capacitor was investigated. We mixed aluminum powder having mean particle size of $40{\mu}m$ with NaCl powders at weight ratio of 4 : 1 and prepared a disk type electrode after annealing at various temperature. After dissolving NaCl in $50^{\circ}C$ distilled water, heat treatment, eletropolishing, chemical treatment, and the first and the second etching of Al disk were conducted. In each process, capacitances and resistances of the disk measured by ac-impedance analyzer were compared to find its optimum treatment condition. Also, the surface morphology of treated disks were observed and compared by SEM. After the second etching, the Al disk was anodized at 365V to make an anode of hybrid supercapacitor that can be operated at 300V, Capacitance and resistance of the anodized Al disk electrode was compared with those of commercialized conventional aluminum electrolytic capacitor at different frequencies.

$\textrm{CO}_2$ Gas Sensor Based on $\textrm{Li}_2\textrm{ZrO}_3$ System ($\textrm{Li}_2\textrm{ZrO}_3$ 계를 이용한 $\textrm{CO}_2$ 가스 센서)

  • Park, Jin-Seong;Kim, Si-Uk;Lee, Eun-Gu;Kim, Jae-Yeol;Lee, Hyeon-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.896-899
    • /
    • 1999
  • A carbon dioxide gas sensor was studied as a function of temperature and $CO_2$concentration in the Li$_2$ZrO$_3$ system. Lithium zirconate(Li$_2$ZrO$_3$) was synthesized by the heat-treatment of zirconia(ZrO$_2$)and Lithium carbonate(Li$_2$CO$_3$). The specimens were prepared both as bulk disk, 10mm in diameter and 1.0mm thickness, and thick films on an alumina substrate. Lithium zirconate readily responded to $CO_2$concentration from 0.1% to 100% in the range of 45$0^{\circ}C$ to $650^{\circ}C$. The sensitivity to $CO_2$ was dependent on the measuring temperature. Lithium zirconate(Li$_2$ZrO$_3$) decomposes into Li$_2$CO$_3$ and ZrO$_2$after the reaction with $CO_2$in the range of 45$0^{\circ}C$ to $650^{\circ}C$. Li$_2$CO$_3$ changes into Li$_2$O and $CO_2$ above $650^{\circ}C$. The material showed difficulty with reversibility and recovery. The optimum temperature for the highest sensitivity is around 55$0^{\circ}C$.

  • PDF

Studies on the Pasteurization Conditions of Takju (탁주의 저온 살균조건에 관한 연구)

  • Lee, Cherl-Ho;Tae, Won-Taek;Kim, Gie-Myung;Lee, Hyun-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.44-51
    • /
    • 1991
  • The thermal resistance of the important microorganisms in takju. Korean traditional turbid alcoholic beverage, was measured and optimun heating time and temperature to achieve the commercial pasteurization of these microorganisms were examined. Most of the vegetative bacterial cells in takju were destroyed by heating at over $60^{\circ}C$, except for the spore forming organisms, which did not actively grow in takju after pasteurization. The important microorganisms for the quality deterioration of pasteurized takju were then appeared to be yeast and molds, and their thermal resistances were measured. The thermal resistances of these microorganisms changed greatly depending upon the heating method. The D values of yeast in takju were 3.5 min at $65^{\circ}C$ and 0.46 min at $80^{\circ}C$ in cap-tube, and 7.1 sec at $65^{\circ}C$ and 2.3 sec at $80^{\circ}C$ in a continuous coil heat exchanger. Those of molds were 2.7 min at 65℃ and 0.25 min at $80^{\circ}C$ in cap-tube, and 3 sec at $65^{\circ}C$ and <1 sec at $80^{\circ}C$ in the coil heat exchanger. The acidity and pH did not change at $30^{\circ}C$ for two weeks after pasteurization by heating in the coil heat exchanger at $65^{\circ}C$ for 17 sec, but the viscosity increased slightly by the heat treatment. Significant differences in sensory quality, especially the formation of burnt smell and bitterness by heating takju for 12D of yeast at $70,\;80\;and\;85^{\circ}C$, respectively, were observed and this resulted in the significant reduction in overall likeness of pasteurized takju. However, when the heating temperature was fixed to $80^{\circ}C$, the overall likeness of pasteurized takju did not affected significantly by the heating time ranging from 8D to 12D of yeast. It was concluded that the optimum pasteurization condition of takju in a continuous heat exchanger was heating at $80^{circ}C$ for 23sec(10D of yeast).

  • PDF