• Title/Summary/Keyword: Optimum heat-treatment temperature

Search Result 246, Processing Time 0.03 seconds

Purification and Some Properties of Peroxidase from the Fruit Malus sieboldii (Regel) Rehder (아그배 Peroxidase의 정제 및 특성)

  • Yang, Hee-Cheon;Son, Hee-Suk;Shim, Kyu-Kwang;Oh, Chan-Ho;Choi, Dong-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 1992
  • Peroxidase in the fruit of Malus sieboldii (Regel) Rehder was partially purified by DEAE-cellulose column chromatography and Ultro-AcA 54 gel filtration. The optimum pH of peroxidase was 4.5 and optimum temperature was $80^{\circ}C$. The enzyme was stable at pH 5.0 and below $30^{\circ}C$, and inactivated by heat treatment at $80^{\circ}C$ for 15min. In the presence of 30mM $H_{2}O_2$ Km value on o-phenylenediamine as substrate was 1.65mM, and in the presence of 10mM o-phenylenediamine Km value on $H_{2}O_2$ was 7.97mM. L-Ascorbic acid and sodium L-ascorbate greatly inhibited the enzyme activity and among several metal ions $Mn^{2+}$ only increased the activity at 5mM.

  • PDF

Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch (탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질)

  • Kim, Myoung Cheol;Eom, Sang Yong;Ryu, Seung Kon;Edie, Dan D.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.745-750
    • /
    • 2005
  • Naphtha cracking bottoms(NCB) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers. The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions. The optimum precursor pitch was prepared when the NCB oil was reformed at $380^{\circ}C$, 3 h and 1.25 vvm $N_2$, and it's the softening point was around $240^{\circ}C$. The reforming resulted in product yield of 21 wt%. The C/H mole ratio of the precursor pitch increased from 1.07 to 1.34, the aromaticity increased from 0.85 to 0.88. The insolubles in benzene and quinoline were 30.0 wt% and 1.5 wt%, respectively. The spinning temperature was about $50^{\circ}C$ higher than the softening point. The molecular weights of the precursor components were distributed from 250 to 1250, and 80% of them were in the range of 250 to 700.

Purificaton and Some Properties of Polyphenol Oxidase from Ginko biloba Leaves (은행잎에서 분리한 Polyphenol Oxidase의 정제 및 특성)

  • Seol, Ji-Yeon;Park, Soo-Sun;Kim, An-Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.306-313
    • /
    • 1999
  • Polyphenol Oxidase(PPO) was purified from an extract of Ginkgo biloba leaves by ammonium sulfate fractionation followed by sephadex G-150 column chromatography, which resulted in a 18-fold increase in specific activity. The enzyme was most active at pH 8.5 and the temperature optimum for the PPO catechol oxidation reaction was $45^{\circ}C$. Heat inactivation studies showed that heating for 7, 9 and 48 min, at 80, 70 and $60^{\circ}C$ respectively caused a 50% loss in enzymatic activity and that the enzyme was completely inactivated after heat treatment at $90^{\circ}C$ for 60 min. Km values of the PPO for catechol, hydroquinone and 4-methylcatechol derived from Lineweaver-Burk plots were $6.06\;{\times}\;10^{-4}M,\;1.02\;{\times}\;10^{-3}M,\;1.41\;{\times}\;10^{-3}M$ respectively. Of the substrates tested, 4-methylcatechol was oxidized most readily and the enzyme did not oxidize monophenols. The enzyme datalyzed browning reaction was completely inhibited in the presence of reducing reagents, namely ascorbic acid, cysteine, glutathione, 2-mercaptoethanol, potassium metabisulfite at 0.5 mM level. Sodium chloride showed very little inhibition effect on Ginkgo biloba leaves PPO. Lineweaver-Burk analysis of inhibition data revealed that the inhibition by cysteine, 2-mercaptoethanol, potassium cyanide was competitive with ki values of $1.1\;{\times}\;10^{-5}M,\;2.4\;{\times}\;10^{-5}M,\;8\;{\times}\;10^{-5}M$, respectively. Among the divalent cations, $Cu^{2+}ion$ was a strong activator on PPO and $Mn^{2+}ion$ was little or no effect on PPO activity $Ni^{2+}ion$ was an inhibitor on PPO.

  • PDF

Effect of heat-treatment parameter of YBCO film by TFA-MOD process (TFA-MOD법에 의한 YBCO 박막의 열처리변수 효과)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Joo, Jin-Ho;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • We fabricated YBCO coated conductors (CCs) by TFA-MOD process and evaluated microstructure, texture formation, and critical temperature ($T_c$) and current ($I_c$). YBCO precursor solution was synthesized using metal-trifluoroacetates and dip coated on $LaAlO_3$(LAO) substrate. The phase formation and microstructure was characterized by X-ray diffraction and scanning electron microscopy (SEM) and the degree of texture was evaluated by pole-figure analysis. The CC was heat-treated in various calcining temperatures ($370^{\circ}C-460^{\circ}C$) and firing temperatures ($750^{\circ}C-800^{\circ}C$). As fired at $775^{\circ}C$ for 4h, the CC had the highest $T_c$ of 89.5 K and $I_c$ of 40 A/cm-width ($J_c=2.0\;MA/cm^2$). Microstructural observation indicated that the YBCO film was dense and homogeneous and had a strong cube texture without formation of second phase and its in-plane full-width at half-maxima; $5.2^{\circ}$ under optimum condition.

  • PDF

A Study For Optimizing Input Waveforms In Radiofrequency Liver Tumor Ablation Using Finite Element Analysis (유한 요소 해석을 이용한 고주파 간 종양 절제술의 입력 파형 최적화를 위한 연구)

  • Lim, Do-Hyung;NamGung, Bum-Seok;Lee, Tae-Woo;Choi, Jin-Seung;Tack, Gye-Rae;Kim, Han-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2007
  • Hepatocellular carcinoma is significant worldwide public health problem with an estimated annually mortality of 1,000,000 people. Radiofrequency (RF) ablation is an interventional technique that in recent years has come to be used for treatment of the hepatocellualr carcinoma, by destructing tumor tissues in high temperatures. Numerous studies have been attempted to prove excellence of RF ablation and to improve its efficiency by various methods. However, the attempts are sometimes paradox to advantages of a minimum invasive characteristic and an operative simplicity in RF ablation. The aim of the current study is, therefore, to suggest an improved RF ablation technique by identifying an optimum RF pattern, which is one of important factors capable of controlling the extent of high temperature region in lossless of the advantages of RF ablation. Three-dimensional finite element (FE) model was developed and validated comparing with the results reported by literature. Four representative Rf patterns (sine, square, exponential, and simulated RF waves), which were corresponding to currents fed during simulated RF ablation, were investigated. Following parameters for each RF pattern were analyzed to identify which is the most optimum in eliminating effectively tumor tissues. 1) maximum temperature, 2) a degree of alteration of maximum temperature in a constant time range (30-40 second), 3) a domain of temperature over $47^{\circ}C$ isothermal temperature (IT), and 4) a domain inducing over 63% cell damage. Here, heat transfer characteristics within the tissues were determined by Bioheat Governing Equation. Developed FE model showed 90-95% accuracy approximately in prediction of maximum temperature and domain of interests achieved during RF ablation. Maximum temperatures for sine, square, exponential, and simulated RF waves were $69.0^{\circ}C,\;66.9^{\circ}C,\;65.4^{\circ}C,\;and\;51.8^{\circ}C$, respectively. While the maximum temperatures were decreased in the constant time range, average time intervals for sine, square, exponential, and simulated RE waves were $0.49{\pm}0.14,\;1.00{\pm}0.00,\;1.65{\pm}0.02,\;and\;1.66{\pm}0.02$ seconds, respectively. Average magnitudes of the decreased maximum temperatures in the time range were $0.45{\pm}0.15^{\circ}C$ for sine wave, $1.93{\pm}0.02^{\circ}C$ for square wave, $2.94{\pm}0.05^{\circ}C$ for exponential wave, and $1.53{\pm}0.06^{\circ}C$ for simulated RF wave. Volumes of temperature domain over $47^{\circ}C$ IT for sine, square, exponential, and simulated RF waves were 1480mm3, 1440mm3, 1380mm3, and 395mm3, respectively. Volumes inducing over 63% cell damage for sine, square, exponential, and simulated RF waves were 114mm3, 62mm3, 17mm3, and 0mm3, respectively. These results support that applying sine wave during RF ablation may be generally the most optimum in destructing effectively tumor tissues, compared with other RF patterns.

Preparation of Ferroelectric (YbxY1-x)MnO3 Thin Film by Sol-Gel Method (졸-겔법에 의한 (YbxY1-x)MnO3강유전체 박막제조)

  • 강승구;이기호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • The ferroelectric (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ thin films were fabricated by sol-gel method using Y-acetate, Yb-acetate, and Mn-acetate as raw materials. The stable (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ precursor solution (sol) was prepared through the reflux process with acetylaceton as a catalyst and coated on Si(100) substrate by spin coating. The heat treatment temperature and, Rw ($H_2O$/alkoxide moi ratio) dependence on crystallinity of thin films were studied. The lowest temperature for obtaining YbMn $O_3$phase and the optimum heat-treatment conditions were proved as at 7$50^{\circ}C$ and 80$0^{\circ}C$, respectively. The hexagonal YbMn $O_3$with c-axis preferred orientation could be obtained at Rw=1 condition. The remanent polarization for the thin films of x=0 or 1 was about 200 nC/㎤ while, for the specimens ot 0< x< 1, were 50∼100 nC/$\textrm{cm}^2$.

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

Micro-Structure and Magnetic Properties of Electroless Co-W-P Alloy Deposits Formed (무전해 Co-W-P 합금 도금 층의 미세구조와 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • In these respects the purpose of this research is manufacturing Co-W-P alloy thin film on the corning glass 2948 by electroless plating method using $NaH_2PO_2H_2O$ (sodium hypophosphite) as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction occurred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of 8$0^{\circ}C$. Also magnetic characteristics was found to be most excellent at the pH of 9 and the temperature of 7$0^{\circ}C$, resulting in the coercive force of 870Oe and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was 0.216$\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand, (1010), (0002), (1011) orientation of hcp for $\alpha$-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-W-P alloy thin film, coercive force was 500Oe and squareness was 0.6. For crystal orientation, (0002) orientation of $\alpha$-Co was dominatly found. Then we could confirm the formation of perpendicular magnetization. The content of P was constant at 0.8$\pm$0.2% and the content of W increased as the concentration of Na$_2$WO$_4$increased. When the concentration of Na$_2$WO$_4$was 0.1mol/L, the composition of W was 20%. We observed the changes of magnetic characteristics and microstructure of thin film depositions of Co-W-P by the heat treatment. For heat treatment, the temperature was increased step by step to 10$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$ and it took 1 hour at each step in the reductive condition of hydrogen gas. By the heat treatment, flatness of surface was improved, but there were no changes on the magnetic characteristics and the microstructures.

  • PDF

Synthesis and Characteristics of Zirconium Hybridized Polycarbosilane (지르코늄 혼성 폴리카르보실란의 합성 및 특성)

  • Kang, Phil-Hyun;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.791-797
    • /
    • 1998
  • As organosilicon based preceramic polymer, new zirconium hybridized polycarbosilane having a good thermal stability and forming stage was synthesized. Oxidative stability(infusibility) and mechanical property of this polymer during the thermal curing process and heat treatment were examined. Prepared zirconium hybridized polycarbisilane (PZC) was spun into fiber at $250{\sim}270^{\circ}C$. Spinnability of PZC polymer having a molecular weight of 1000 to 1400 and having a dispersity<2 was good. The thermal curing process of the PZC fiber was done at 140 to $200^{\circ}C$. The mechanical properties of PZC ceramic fiber depend on curing temperature of PZC as precursor of PZC ceramic fiber. It was found that the optimum curing temperature was variable with the molecular weight of PZC. The cured PZC fiber need constant gel fraction to have good tensile strength.

  • PDF

Physiochemical Characteristics of Lactobacillus acidophilus KH-l Isolated from the Feces of a Breast-Fed Infant

  • Yu, K.H.;Kang, S.N.;Park, S.Y.
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2005
  • Three lactobacillus strains, two from infant feces, and one from cow's milk, were selected among 172 isolates, from multiple sources, for further study based on the antimicrobial activities against six strains of pathogenic bacteria and identified as Lactobacillus acidophilus. The strains revealed a wide scope of spectrum against pathogenic bacteria. Viable Lactobacillus acidophilus KH-l cell counts at pH 2.0 were slightly decreased to $1.42\times10^7$ CFU/mL from $4.18\times10^7$ CFU/mL, while remaining at $3.42\times10^7$ CFU/mL at pH 4.0 with the survival rate of $33.97\%\;and\;81.82\%$, respectively. At the concentration of $0.1\%$ oxgall, L acidophilus KH-l kept growing up to $3.12\times10^7$ CFU/mL with a mean growth rate constant (k) of 0.25, and cell number was slightly decreased to $1.21\times10^7$ CFU/mL (k=0.19) with $0.3\%$ oxgall, but remained at $7.6\times10^6$ CFU/mL (k=0.17) with $0.5\%$ oxgall. L. acidophilus KH-l had a $D_{60}$ value of 7.14, with viable cell numbers $1.4\times10^5$ CFU/mL after heat treatment at $60^{\circ}C$ for 30 minutes. Stability of L acidophilus KH-l at $-20^{\circ}C$ was significantly higher, when the strain was cultivated under the optimum growth temperature $(54.41\%\;and\;54.35\%)$ than at the temperature $(13.53\%)$.