• 제목/요약/키워드: Optimum design technique

검색결과 582건 처리시간 0.029초

모멘트 - 저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용 (Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures)

  • 이한선
    • 전산구조공학
    • /
    • 제2권4호
    • /
    • pp.99-109
    • /
    • 1989
  • 몇 가지의 예를 들어 점진적 붕괴가 내진설계의 중요한 설계기준이 될 수 있다는 것과 이와 관련하여 Shakedown 해석이 한 구조설계 도구로 사용될 수 있다는 사실이 밝혀진다. 이 Shakedown 해석기법을 사용하여 비선형 계획에 의한 최적 구조설계 프로그램이 개발되었는데, 이것은: (i) 탄성응력과 처짐에 대한 제약조건: (ii) 점진적 붕괴와 약충붕괴의 방지를 위한 제약조건: 그리고 (iii) 구조물의 기본주기에 대한 제약조건을 수용하고 있다. 마지막으로 내진설계의 모든 요구조건을 만족시키는 최적설계를 얻기 위하여, 이 개발된 프로그램을 이용한 5-단계 설계방법론이 제시되고 있다.

  • PDF

반강접 접합부를 고려한 철골 구조물의 2차 탄성 해석 및 최적설계 (Second-Order Elastic Analysis and Optimum Design Considering Semi-Rigid Connection for Steel Structures)

  • 구본율;박춘욱;강성원;강문명
    • 한국공간구조학회논문집
    • /
    • 제3권1호
    • /
    • pp.35-46
    • /
    • 2003
  • Conventional analysis and design of steel structures are performed using the assumption of a either fully rigid or pinned. However, every steel connection lies in between fully rigid and pinned connection. So, It is important to consider the connection for steel structure design. In this paper Computer-based second-order elastic analysis is used to calculate one story two bay and two story three bay for steel structures with semi-rigid connection. Genetic Algorithms(GAs) and Sequential Unconstrained Minized Technique(SUMT) dynamic programming is used to the method for optimum design of steel structures. The efficiency and validity of the developed continuous and discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

Optimum design of parabolic steel box arches

  • Azad, Abul K.;Mohdaly, Hani M.M.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.169-180
    • /
    • 2000
  • An optimization procedure has been prescribed for the minimum weight design of symmetrical parabolic arches subjected to arbitrary loading. The cross section is assumed to be a symmetrical box section with variable depth and flange areas. The webs are unstiffened and have constant thickness. The proposed sequential, iterative search technique determines the optimum geometrical configuration of the parabolic arch which includes the optimum depth profile and the optimum lengths and areas of the required flange plates corresponding to the prescribed number of curtailments. The study shows that the optimum value of rise to span ratio (h/L) of a parabolic arch is maximum at 0.41 for uniformly distributed loading over the entire span. For any other loading, the optimum value of h/L is less than 0.41.

순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발 (Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network)

  • 이정환;서명원
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계 (Robust Design of Composite Structure under Combined Loading of Bending and Torsion)

  • 윤지용;오광환;남현욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

A study on minimum weight design of vertical corrugated bulkheads for chemical tankers

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.180-187
    • /
    • 2018
  • Corrugated bulkhead has been adopted for cargo tank bulkheads of commercial vessels such as bulk carriers, product oil carriers and chemical tankers. It is considered that corrugated bulkhead is a preferred structural solution, compared to the flat stiffened bulkhead, due to several advantages such as lower mass, easier maintenance and smaller corrosion problems. Many researches to find the optimum shape of corrugated bulkhead have been mostly carried out for bulk carriers. Compared to corrugated bulkheads of bulk carriers, ones of chemical tankers are more complicated since they are composed of transverse and longitudinal bulkheads, and they are made of higher priced materials. The purpose of this study is the development of minimum weight design method for corrugated bulkhead of chemical tankers. Evolution strategy is applied as an optimization technique. It has been verified from many researches that evolution strategy searches global optimum point prominently by using multi-individual searching technique. Multi-individual searching methods need excessive time if they connect to 3-D finite element model for repetitive structural analyses. In order to resolve this issue, 2-D beam element connected to deck and lower stool is substituted for a corrugated structure in this study. To verify the reliability of the structural responses by idealized 2-D beam model, they have been compared with ones by 3-D finite element model. In this study, optimum design for corrugated bulkhead of 30 K chemical tanker has been carried out, and the results by developed optimum design program have been compared with design data of existing ship. It is found out that optimum design is about 9% lighter than one of existing ship.

생산성을 고려한 평블록의 최적 구조 설계 (Optimum Structural Design of Panel Block Considering the Productivity)

  • 이주성;김종문
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.139-147
    • /
    • 2007
  • The ultimate goal of structural design is to find the optimal design results which satisfies both safety and economy at the same time. Optimum design has been studied for the last several decades and is being studied. in this study, an optimum algorithm which is based on the genetic algorithm has been applied to the multi-object problem to obtain the optimum solutions which minimizes structural weight and construction cost of panel blocks in ship structures at the same time. Mathematical problems are dealt at first to justify the reliability of the present optimum algorithm. And then the present method has been applied to the panel block model which can be found in ship structures. From the present findings it has been seen that the present optimum algorithm can reasonably give the optimum design results.

자동차 휠 베어링 유닛의 장수명 설계 (A Design of an Automotive Wheel Bearing Unit for Long Life)

  • 윤기찬;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

Collins 내동기의 최적 설계조건 (Optimum Design Condition of the Collins Cryocooler)

  • 이상원;김수연;정평석
    • 설비공학논문집
    • /
    • 제4권3호
    • /
    • pp.183-190
    • /
    • 1992
  • The Collins cryocooler is numerically analysed with the optimization technique, and the optimum operating and design conditions are searched. This paper shows that liquefied helium quantity has an external maximum w.r.t. the total mass flow rate, the mass flow rates through expander and the capacities of heat exchangers. The liquefied helium quantity increases as the compressor exit pressure of the cryocooler does. The maximum quantity of liquefied helium and the maximum coefficient of performance have been found to exist in extremum, depending on the ratios of each heat exchanger capicities to the total one. At the optimum condition, the capacity of heat exchanger in high temperature region is larger than that in low temperature region.

  • PDF