• 제목/요약/키워드: Optimum cutting angle

검색결과 42건 처리시간 0.023초

버의 최소화를 위한 실험조건 최적화 (Optimization of Experimental Parameters for Burr Minimization)

  • 이상헌;이성환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.225-229
    • /
    • 2000
  • Burrs formed during face milling operations are very hard to characterize like other machining burrs because there are many parameters which affect the cutting process. Many researchers have tried to predict burr characteristics including burr size and shapes with various experimental conditions such as cutting speed, feed rate, in-plane exit angle, number of inserts, etc., but it still remains as a challenging problem for the complicated combination effects between the parameters. In this paper, Taguchi method, which is a systematic optimization application of design and analysis of experiments, is introduced to acquire optimum cutting parameters for burr minimization. Optimized experimental conditions are provided to show the effectiveness of this approach.

  • PDF

선삭가공에서의 테이퍼 홈 절삭특성에 관한 연구 (A Study on Cutting Characteristic of Tapered Groove in Turning)

  • 최치혁;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.27-32
    • /
    • 2011
  • In recently, it is demanded development of manufacturing techniques for machining of various mechanical parts. Therefore the development of turning is one of the important manufacturing techniques. In this study, an experimental shape in tapered groove turning was suggested, and the turning process was investigated by analyzing cutting speed, feed rate, tapered angle, depth of cut. The surface roughness and cutting force change in the workpiece was measured. From the results, the optimum machining conditions are obtained by design of experiments.

실험계획법과 뉴럴 네트워크를 이용한 밀링 버 형상 예측 (Prediction of Burr Types using the Taguchi Method and an Artificial Neural Network)

  • 이성환;김설빔;조용원
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.45-52
    • /
    • 2006
  • Burrs formed during face milling operations can be very difficult to characterize since there exist several parameters which have complex combined effects that affect the cutting process. Many researchers have attempted to predict burr characteristics including burr size and shape, using various experimental parameters such as cutting speed, feed rate, in-plane exit angle, and number of inserts. However, the results of these studies tend to be limited to a specific process parameter range and to certain materials. In this paper, the Taguchi method, a systematic optimization method for design and analysis of experiments, is introduced to acquire optimum cutting conditions for burr minimization. In addition, an in process monitoring scheme using an artificial neural network is presented for the prediction of burr types.

$TiC-A1_2O_3$ 피복초경공구의 최적피복두께에 관한 연구 (A Study on the Optimum coating thickness of $TiC-A1_2O_3$ coated cemented carbide tool)

  • 김정두
    • 기술사
    • /
    • 제21권1호
    • /
    • pp.5-12
    • /
    • 1988
  • The purpose of this paper is to investigate on the optimum coating thickness layer of TiC-Al$_2$O$_3$ coated cemented carbide tool. Chemical Vapor Deposition (CVD) of a thick film of TiC-A1$_2$O$_3$ on a cemented carbide produces an intermediate layer, $1.5mutextrm{m}$, 4.5${\mu}{\textrm}{m}$, 7.5${\mu}{\textrm}{m}$ 10.5${\mu}{\textrm}{m}$, 4 kind of TiC between the substrate and the $1.5mutextrm{m}$ constant thick A1$_2$O$_3$ coating. Experiments were carried out with the test relationship between coating thickness and shear angle, surface roughness, cutting force, microphotograph of crater wear, flank wear, tool life. From the experimental results, it was found that the optimum coating thickness of TiC-A1$_2$O$_3$ is 6${\mu}{\textrm}{m}$. Although the coating thickness layer 9${\mu}{\textrm}{m}$. 12${\mu}{\textrm}{m}$ have a much loger tool wear than an 3${\mu}{\textrm}{m}$, 6${\mu}{\textrm}{m}$ coating tool in cutting condition feed 0.05mm/rev, and the condition of feed 0.2mm/rev, 0.3mm/rev has upon in the shot time phenomenon of chipping.

  • PDF

트랙터부착형 배추수확장치의 설계요인 (Design Factors for Chinese Cabbage Harvester Attachable to Tractors)

  • 홍종태;최용;성제훈;김영근;이기명
    • Journal of Biosystems Engineering
    • /
    • 제26권4호
    • /
    • pp.337-354
    • /
    • 2001
  • This study was conducted in order to develop a Chinese cabbage harvester attachable to tractors. For designing Chinese cabbage harvester in which laboratory and field tests were conducted with to determine feasible values design factors. To adopt the various sizer of C-cabbages, U-type soft rubber band was attached to the chain conveyor with an angle. Required torque of the conveyor axle was about 206-210kgf$.$cm. And the required peripheral speed of the disk cutter was 6.54m/s or more to have a clean session in root cutting. Three different harvest method were tested. The best harvesting method with minimum pulling force and damage was disk cutting flying just above the soil surface were the cut chinese cabbages are transferring to the holding conveyor attached soft rubber lug in prompt. Theoretical speed ratio of the tractor travel and feed of a chain conveyor was 1:1.2 with the attaching angle of 30 degree and 1:1.1 with the angle of 20 degree. Actual field experiment showed the speed ratio of 1:1.5 was the best because of the slip effect.

  • PDF

퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험 (Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks)

  • 정호영;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제20권1호
    • /
    • pp.161-182
    • /
    • 2018
  • 본 연구에서는 퇴적층 암석에서 픽 커터의 절삭성능을 평가하기 위하여 선형절삭시험을 수행하였다. 중국에서 채취된 Linyi사암과 역암을 모사한 콘크리트를 시험체로 사용하였다. 소규모 선형절삭시험장비를 이용하여 다양한 절삭조건하에서 절삭조건에 따른 커터작용력과 비에너지의 변화양상을 평가하였다. 커터작용력은 두 가지 재료 모두에서 압입깊이와 커터간격이 증가함에 따라 증가하는 경향을 나타내었고 재료의 강도에 영향을 받는 것으로 나타났다. 반면 최대작용력과 평균작용력의 비율은 재료의 강도에 영향을 받기 보다는 재료의 구성 물질과 절삭특성에 영향을 받는 것으로 판단되었다. 절삭계수는 암석과 픽 커터의 마찰 특성에 영향을 받으나 절삭조건에는 영향을 받지 않는 것으로 나타났다. 따라서 절삭계수와 픽 커터 작용력의 합력방향에 따라 암석의 특성을 고려한 최적의 절삭각도를 선정해야 할 것으로 판단되었다. 한편 절삭조건에 따른 비에너지의 변화양상으로부터 최적 절삭조건을 규명하였다. 두 가지 재료에서 최적 s/p비는 2~4 범위로 도출되었고, 압입깊이가 증가함에 따라 비에너지는 감소하는 경향을 나타내었다. 본 연구의 결과는 픽 커터의 절삭메커니즘 규명을 위한 데이터베이스로 활용될 수 있으며, 픽 커터를 사용한 기계굴착장비의 설계에 활용될 수 있을 것으로 기대된다.

로우터리 맥류파종기 경운날의 개량시험 (Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

실험계획법에 의한 자동차용 러버실 금형가공을 위한 총형공구의 최적설계 (Optimum Design of Formed Tool for Die of Bearing Rubber Seal Using Design of Experiments)

  • 이여해;임표;이희관;양균의
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.47-53
    • /
    • 2007
  • A bearing is one of core parts in automobile. Rubber seal of the bearing is important to improve performance of bearing, formed by hot-press die of rubber seal for the intricate shape. In this study, formed tools are used to machine die of bearing rubber seal and the machining operation is classified into the several process of high precision. Design of experiments is used to optimize selection of the formed tools for the efficient machining of the hot-press die. The cutting force, tool wear and tool life are determined to characteristics. And, the clearance angle, the rake angle and the length cutting edge are considered as the major factors. Experiments are repeated to use one-way factorial design, and tool life is predicted by regression model.

전이 구간(트렌지션 커터존)의 최적 디스크커터 각도 산정에 관한 수치해석 연구 (Numerical analysis on the estimation of optimal disc cutter angle in transition cutter zone)

  • 이상연;송기일
    • 한국터널지하공간학회 논문집
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 2021
  • Tunnel boring machine (TBM)의 설계에 있어서 지반과 직접적으로 맞닿아 절삭을 담당하는 커터헤드의 설계에 따라서 장비의 굴진효율이 달라지게 된다. 디스크커터는 배치되는 위치에 따라 센터 커터 존, 이너 커터 존, 트렌지션 커터 존으로 구분된다. 기존에도 페이스커터의 최적 절삭조건을 규명하기 위한 연구는 많이 진행되어 왔으나, 트렌지션 커터의 최적 절삭조건을 규명하기 위한 연구는 상대적으로 미진하였다. 본 연구에서는 트렌지션 커터의 최적의 절삭조건을 규명하기 위해 개별요소법 수치해석을 수행하고 트렌지션 커터 사이의 각도에 따른 비에너지 곡선을 작도하여 최적 절삭조건을 알아보고자 하였다. 수치해석 결과 전이영역에서 최소 비에너지를 보이는 트렌지션 커터 사이의 각도 9°인 것으로 확인되었다. 이를 트렌지션 커터의 경사각에 따라 3가지 영역으로 구분하고 영역별 디스크커터 사이의 각도와 비에너지를 정리한 결과 트렌지션 커터의 경사각이 커질수록 최적 비에너지를 보이는 트렌지션 커터 사이의 각도는 10°에서 8°까지 점차 감소하는 경향을 보였다. 이러한 결과는 기존에 사용되고 있는 트렌지션 커터의 설계 결과와 유사한 경향으로써, 본 연구의 결과를 밑받침한다.

Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams

  • Kaveh, A.;Ghafari, M.H.
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.933-950
    • /
    • 2016
  • Decks, interior beams, edge beams and girders are the parts of a steel floor system. If the deck is optimized without considering beam optimization, finding best result is simple. However, a deck with higher cost may increase the composite action of the beams and decrease the beam cost reducing the total cost. Also different number of floor divisions can improve the total floor cost. Increasing beam capacity by using castellated beams is other efficient method to save the costs. In this study, floor optimization is performed and these three issues are discussed. Floor division number and deck sections are some of the variables. Also for each beam, profile section of the beam, beam cutting depth, cutting angle, spacing between holes and number of filled holes at the ends of castellated beams are other variables. Constraints include the application of stress, stability, deflection and vibration limitations according to the load and resistance factor (LRFD) design. Objective function is the total cost of the floor consisting of the steel profile cost, cutting and welding cost, concrete cost, steel deck cost, shear stud cost and construction costs. Optimization is performed by enhanced colliding body optimization (ECBO), Results show that using castellated beams, selecting a deck with higher price and considering different number of floor divisions can decrease the total cost of the floor.