• Title/Summary/Keyword: Optimum application of fertilizer

Search Result 208, Processing Time 0.245 seconds

Effect of Fertilizer Levels on Growth Characters, Dry Matter Yield and Nutrient Quality of Forage Rape in Spring Sowing

  • Kwon, Byung-Sun;Shin, Jeong-Sik;Shin, Dong-Young;Hyun, Kyu-Hwan;Park, Hee-Jin;Sin, Jong-Sup;Seong-Kyu
    • Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • To find out the optimum fertilizer level for high yielding variety, Velox, experiment was conducted with 15 compositions of fertilizer levels at the experiment field of forage crop in Sunchon National University from Mar. 2000 to Aug. 2000. The effects of nitrogen fertilizer on plant growth were significant but increasing rate of application in potassium and phosphate fertilizers above 6 kg/a had negligible effects on plant growth. The optimum nitrogen application level of fertilizers turned out to be 16-6-6 kg/l0a of N-P$_2$O$_{5}$-K$_{5}$O. Content of crude protein was highest and that of crude fiber such as NDF, ADF, cellulose and lignin were lowest at this rate of fertilizer application. Furthermore, IVDMD was high and dry matter yield were highest at the optimum raterate

  • PDF

Effects of Mixed Organic Fertilizer Application with Rice Cultivation on Yield and Nitrogen Use Efficiency in Paddy Field (벼 재배시 혼합유기질비료 시용이 질소이용율과 수량에 미치는 영향)

  • Cho, Kwang-Rae;Won, Tae-Jin;Kang, Chang-Sung;Lim, Jae-Wook;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.152-159
    • /
    • 2009
  • This study was carried out to investigate optimum application rate with mixed organic fertilizer for chemical fertilizer alternative where the paddy rice (Chucheong) was cultivated in clay loam of paddy field. The mixed organic fertilizer were applied at 0, 50, 100 and 150% levels of recommended nitrogen by soil testing plot compared with plot of chemical fertilizer (nitrogen, phosphate and potash), respectively. The ammonium nitrogen content in paddy soil and surface water of mixed organic fertilizer 100% plot were higher than chemical fertilizer plot. The absorbed amount of nitrogen and nitrogen use efficiency by rice plant in mixed organic fertilizer 100% plot were higher than chemical fertilizer plot. The number of tillers on rice at 30 days and 60 days after transplanting mixed organic fertilizer 100% plot were many more than chemical fertilizer plot. The milled rice yield of mixed organic fertilizer 100% plot was increased by 4% than chemical fertilizer plot. The optimum application rate of mixed organic fertilizer was as follows ; $OAR_{MOF}(Mg\;ha^{-1})=[(NAR_{ST}{\div}NC_{MOF}/1,000{\times}0.93)/1,000]$ ($OAR_{MOF}$ : Optimum application rate of mixed organic fertilizer, NARST : Nitrogen application rate($kg\;ha^{-1}$) by soil testing, $NC_{MOF}$ : Nitrogen content($g\;kg^{-1}$) of mixed organic fertilizer, and $0.93:124.3kg\;ha^{-1}/133.0kg\;ha^{-1}$, respectively).

Effects of Fertilizer Levels on Dry Matter Yield and Nutritional Quality of Forage Rye

  • Kwon, Byung-Sun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.181-186
    • /
    • 2004
  • To find out the optimum fertilizer level for high yielding variety, Paldanghomil, experiment was conducted with 15 compositions of fertilizer levels at the experiment field of forage rye in Sunchon National University from Sep. 1998 to Aug. 1999. The effects of nitrogen fertilizer on plant growth were large significant but increasing rate of application in potassium and phosphate fertilizers above 10kg/10a had negligible effects on plant growth. Raising nitrogen application rate of fertilizers turned out to be 18-10-10kg/l0a of N-P$_2$O$_{5}$-K$_2$O. Content of crude protein was the highest and that of crude fiber such as NDF, ADF, cellulose and lignin were lowest at this rate. Furthermore, IVDMD was high and dry matter yield were the highest at the optimum rate.e.

  • PDF

Optimum Application Amount, Timing, and Frequency of Slurry Composted and Biofiltered Liquid Fertilizer for Zoysia japonica 'Millock'

  • Park, Suejin;Lee, Seung Youn;Ryu, Ju Hyun;Jung, Hyun Hwan;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.635-641
    • /
    • 2012
  • In Korea, slurry composted and biofiltered (SCB) liquid fertilizer is produced through the composting and biofiltering of animal waste. An appropriate guidelines involving proper treatment of SCB liquid fertilizer on turfgrass should be considered. An experiment was conducted to determine the optimum application amount, timing, and frequency of SCB liquid fertilizer for Zoysia japonica 'Millock'. The SCB liquid fertilizer was applied in low, medium, and high amount (N at 15, 25, and 40 $g{\cdot}m^{-2}$ per year in 2010, and 10, 20, and 40 $g{\cdot}m^{-2}$ per year in 2011, respectively) and treated during the growing season or dormancy period. During the growing season, SCB liquid fertilizer was applied twice or four times. The greatest improvement in turf quality for both years was in SCB plots applied four times with N at 40 $g{\cdot}m^{-2}$ per year during the growing season (SH4). This treatment exhibited turf color retention in the fall, and enhanced clipping yield during the growing and fall seasons. SCB plots with four times during the growing season (SL4, SM4, and SH4) exhibited higher shoot density relative to the same amount of other SCB treatments. Plots treated during the dormancy period also showed a high turf color index during the next growing season in 2011. The results indicate that SCB with high amount up to N at 40 $g{\cdot}m^{-2}$ per year applied four times during the growing season and dormant application produced high turf quality and growth, and could be recommended as an optimum application guide.

Botanical Composition, Herbage Production and Plant Mineral Contents as Affected by Application of Chemical Fertilizer and Fermented Sawdust Pig Manure on Cheju Brown Volcanic Ash Pasture Soil

  • Kim, Moon-Chul;Hyun, Hae-Nam;Lee, Sung-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2000
  • This experiment was carried out during the period from September, 1997 to October, 1998 to determine the effect of fermented saw-dust pig manure (FSP) application on the herbage production on a mixed pasture in the Cheju brown volcanic ash soil. Split plot design (main plot: 3 nitrogen application levels of 0, 150 and 300 kgiha; sub plot: 4 pig sawdust manure levels of 0, 3, 6 and 12 tonha) was used. Plant height and dry matter yield increased significantly with an increase of nitrogen and FSP level. There was no difference in the botanical composition of grasses as affected by FSP application level, but herbage yields of grass species were increased by nitrogen application compared to that without nitrogen application. Botanical composition of white clover decreased with an increase of nitrogen application, but increased with an increase of FSP application level. Percentages of weeds were not affected by application rates of chemical nitrogen fertilizer and swine manure in the mixed species pasture. Nitrogen, phosphorus, and potassium contents of species in the pasture significantly increased with increasing application rates of nitrogen fertilizer. In conclusion, it would be an optimum to apply 150 kgha of inorganic chemical fertilizer and plus either 3 or 6 toniha of fermented swine manure with sawdust for optimum production of mixed pasture on Cheju Island. (Key words : Herbage production, Botanical composition, Morphology, Plant mineral contents)

  • PDF

Influence of $K_{2}O$ - Fertilizer Application on Growth, Yield and Lodging of Paddy Rice

  • Kwon Byung-Sun
    • Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.32-35
    • /
    • 2005
  • This study was conducted to investigate the influence of $K_{2}O$ fertilizer application on growth, yield and lodging resistance of rice. Culm length and panicle length were lowest at the treatment of fertilizer level, $N-P_{2}O_{5}-K_{2}O=16-8-8$ plot but number of panicle, percentage of fruitful culm, $1{\ell}$ grain weights of paddy rice and brown rice, 1,000 grains weight of brown rice, brown rice ratio, yields of paddy rice and brown rice were highest at the treatment of fertilizer level, $N-P_{2}O_{5}-K_{2}O=16-8-8$ kg/10a plot. Bending moment, breaking strength and lodging index were lowest at the treatment of fertilizer level, $N-P_{2}O_{5}-K_{2}O=16-8-8$ kg/10a plot. Judging from the results reported above, an optimum fertilizer level of rice for lodging resistance is most likely be $N-P_{2}O_{5}-K_{2}O=16-8-8$ kg/10a treatment.

  • PDF

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

The Effects of Liquid Waste from Methane Fermentation on Botanical Composition , Dry Matter Production and Nutrient Quality of Pasture Mixtures (혼파초지에서 메탄발효폐액의 시용이 식생구성 , 수량 및 목초품질에 미치는 영향)

  • 김정갑;신재성;임동규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1987
  • The experiment was carried out to determine the optimum application rate of liquid waste from methane fermentation (LW) and its effect on botanical composition, dry matter yields and nutrient quality of pasture mixtures. Experimental fields was designed as a randomized block treated with NPK chemical fertilizer (NPK = 28-20-24 kg/lOa), NPK + Water 28 ton, 112 NPK + LW 28 ton, 112 NPK + LW 42 ton, LW 28 ton, LW 42 ton and LW 56 ton/lOa at Livestock Experiment Station in Suweon, 1985. The results obtained are summarized as follows: 1. Vegetation of introduced pastures, both in grasses and legumes, was markedly increased in the plots treated with methane-liquid waste. However, heavy application of liquid waste tended to increase of native weeds such as Polygronum spp., Rumex spp. and Lactuca spp. 2. Crude protein contents was increased in the plants applied with liquid waste, but NFE was decreased compared with those of chemical fertilizer applied. The concentrations of crude fat and crude fibre were, however less affected by the fertilizer resource. Among cell-wall constituents, cellulose content was decreased as the liquid waste application rate increased, while hemicellulose showed a negative association. 3. Productivity of the pasture was increased as the liquid waste application rate increased. The highest dry matter yields was obtained in the plot treated with LW 42 ton/lOa by 71 1 kg/lOa, which shows about 71% increments compared with those of chemical fertilizer treated. Net energy yields, both in starch value and NEL, were also markedly increased under liquid waste application. As a results, the optimum application rate of methane-liquid waste was found to be 42 ton in 10 a.

  • PDF

Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation

  • Kim, Lee-Yul;Kim, Ki-In;Kang, Seong Soo;Kim, Jung-Ho;Jung, Kang-Ho;Hong, Soon-Dal;Lee, Won-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Zeolite may help crop growth, yield increase, and salt removal. Field experiment under greenhouse cultivation was conducted to study the effect of zeolite application on growth and yield of Chinese cabbage (Brassica campestris L.) and soil. Soil was classified as Gyuam series (coarse silty, mixed, nonacid, mesic family of Aquic Fluvaquentic Eutrudepts). Six zeolite rates were 0, 3, 5, 10, 20 and $40Mg\;ha^{-1}$. Experimental design was a completely randomized design. Chinese cabbage was grown three times consecutively. Established plant number of plant and yield as fresh weight (F.W.) were measured and soil samples were taken before and after harvesting. Chinese cabbage yield was $76.9Mg\;ha^{-1}$ at a rate of $20Mg\;zeolite\;ha^{-1}$, $54.3Mg\;ha^{-1}$ at a rate of $5Mg\;zeolite\;ha^{-1}$, and $51.3Mg\;ha^{-1}$ at control (no zeolite), respectively. Second order regression analysis using zeolite rate and yield showed that optimum zeolite application rate was between 24 and $26Mg\;ha^{-1}$. The regression equation explained about 88% of the yield variability. The electrical conductivity (EC) decreased from 3.2 to $1.0dS\;m^{-1}$ for all treatments so that salt accumulation was not a concern. Based on the results, we recommend that optimum zeolite application rate is between 20 and $24Mg\;ha^{-1}$ for Chinese cabbage under greenhouse cultivation.

Optimum Application Rates of Phosphate and Potassium Fertilizer under Forcing Culture for High-Quality Rhodiola rosea L. Production (바위돌꽃 (Rhodiola rosea L.)의 촉성재배시 인산과 칼리의 적정시비량)

  • Lee, Kang-Soo;Li, Long-Gen;Hwang, Seon-Ah;Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.423-429
    • /
    • 2009
  • Rhodiola rosea L., a traditional medicinal plant in Eastern Asia, is widely used by astronauts, divers and mountaineers to improve their stress resistance. This experiment was conducted to investigate the optimum application rates of phosphate and potassium under the forcing cultivation for high-quality Rhodiola rosea L. production. The application rate of $8kg\; 10a^{-1}$ of phosphate and $30kg\;10a^{-1}$ of potassium showed the highest yield of Rhodiola rosea L. root. There was no significant difference between the application rates of phosphate or potassium fertilizer and the content of salidroside.