• Title/Summary/Keyword: Optimum Temperature

Search Result 6,352, Processing Time 0.033 seconds

Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin (삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화)

  • Kang, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

Optimum Conditions of Cellulose-Hydrolysis Reaction with Mixed Enzymes of Cellulase and $\beta$-Glucosidase (셀룰라아제와 베타글루코시다아제의 혼합효소를 사용한 섬유소-가수분해반응의 최적조건)

  • 손민일;김태옥
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 1998
  • Optimum conditions of the cellulose-hydrolysis reaction with mixed enzymes(cellulase extracted from Penicellium funiculosum mixed with $\beta$-glucosidase extracted from Almod) were investigated to increase the production of glucose from cellulose. Experimental result showed that optimum conditions fro pH, activity ratio of $\beta$-glucosidase to cellulase, concentration of mixed enzymes, concentration of cellulose as a substrate, and temperature range were 4.2, 0.4, 0.8, U/mL, 40 g/L, and 37$\pm$3$^\circ C$, respectively. In these conditions, quantities of glucose productions by using mixed enzymes were larger than those by using cellulase at optimum conditions.

  • PDF

An Optimal Design of a Vertical Guide Bearing for Vibration Reduction (축계 진동 저감을 위한 수직형 안내 베어링의 최적 설계)

  • Ha, Hyun-Cheon;Park, Chul-Hyun;Kim, Hyung-Ja
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 2001
  • This paper describes an optimal design technology in a segment type vertical guide bearing for vertical rotating machinery. Segment type vertical guide bearings have widely used for vertical rotating machinery, however bearing problems, such as excessive vibration and temperature rise, frequently take place in the actual machine. Such excessive vibration magnitude and/or abnormal bearing metal temperature rise result in serious damage and economic losses. Thus the segment type vertical guide bearing should be designed to get optimal characteristics in order to maintain stable operation without bearing failure due to abnormal vibration and/or abnormal bearing metal temperature. The preload ratio is the most important parameter in designing the segment type vertical guide bearing. Because adjustment of the bearing preload by changing the bearing clearance could easily control both the bearing stiffness and the cooling effect. In the paper, the influence of the preload effects on the bearing metal temperature and the bearing stiffness has been investigated both theoretically and experimentally in order to find out an optimum preload ratio. Results show that the segment type vertical guide bearing has an optimum preload ratio at which the bearing stiffness reaches a masimum value while the bearing metal temperature is minimized.

  • PDF

Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die (목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Song, Myung-Ho;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out. Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing. Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

The Finite Element Analysis and the Geometric Optimal Design of Linear Motor (리니어 모터의 유한요소해석과 기하학적 최적설계)

  • Lee Tae Won;Jung Jae Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.67-74
    • /
    • 2004
  • Linear motor has been considered to be the most suitable electric machine for high speed and high precision linear motion control. Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiment. The temperature of the conductor was calculated by the thermal resistance which was measured by experiment. The optimum design process was coded by the ADPL of ANSYS which is a commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.

NUMERICAL ANALYSIS ON INTERNAL FLOW OF OIL JET COOLING THE PISTON (피스톤 냉각용 Oil jet 유동해석)

  • Kwon J.H.;Jung H.Y.;Lee J.H.;Choi Y.H.;Lee Y.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.219-222
    • /
    • 2005
  • Recently, the interest of the engine capacity and environment of the atmosphere is increasing, so the researches for the engine capacity have been conducted for a long time. But the internal environment of an automotive engine is very severe. A piston is exposed to combustion gas of over $2000^{\circ}C$ and strong friction is occurred by high speed motion in the cylinder. The fraction between piston and wall of the cylinder causes the increase of temperature in the engine. The temperature of the engine has an effect on the engine capacity. If the temperature is high, the capacity of the engine is low. So we have to maintain the optimum temperature. To maintain the optimum temperature, the enough flow rate of the engine oil is needed. The oil jet is used to control the flow rate of the engine oil and supply the engine oil to the piston and cylinder. The purpose of this study is to check the mass flow rate of the engine oil and the characteristics of internal flow of the oil jet. Flow pattern of the engine oil is very important because it concludes the loss in the oil jet. This study is the previous research about the oil jet and we will consider the movement of the ball check valve to get more accuracy result.

  • PDF

A Study of Tensile Strength in 18% Ni Maraging Steel Sheet Welded with Electron Beam (E.B 용접된 18% Ni 마르에이징강 박판의 인장이음강도에 관한 연구)

  • 정병호;김무길;김원녕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.157-165
    • /
    • 1997
  • The strength level of welded joint in room temperature and elevated temperature up to $600^{\circ}C$ was investigated in 250 and 300 grade 18% Ni maraging steel sheet welded with electron beam. The results obtained in this study are as follows; 1. Optimum welding heat input was 600J/cm in 1.0mm thickness and the room temperature tensile strength, joint efficiency of welded joint treated with optimum aging condition were found to be about 166kg/$mm^2$, 95% in 250 grade, 189kg/$mm^2$, 92% in 300 grade maraging steel sheet, respectively. 2. Tensile strength of welded joint in room temperature increased slightly by aging after repeated solution heat treatment, but the fracture mode showed a shear. 3. Joint efficiency at a temperature between $540^{\circ}C$and $600^{\circ}C$ found to be about 72% to 55%, but the joint efficiency exceeded about 90% below $300^{\circ}C$. 4. The fracture occurred in most weld metal, and the fracture surface showed a shallow dimple.

  • PDF

A Study on Properties of $MgF_2$ antireflection film for solar cell (태양전지용 $MgF_2$ 반사방지막 특성연구)

  • Park, Gye-Choon;Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soon-Youl;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.378-380
    • /
    • 2009
  • $MgF_2$ is a current material for the optical applications in the UV and deep UV range. Process variables for manufacturing the $MgF_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions, and then by changing a number of vapor deposition conditions and substrate temperature, Annealing conditions variously, structural and Optical characteristics were measured. Thereby, optimum process variables were derived. Nevertheless, modern applications still require improvement of the optical and structural quality of the deposited layers. In the present work, the composition and microstructure of $MgF_2$ single layers grown on slide glass substrate by Electro beam Evaporator(KV-660) processes, were analyzed and compared. The surface Substrate temperature having an effect on the quality of the thin film was changed from $200[^{\circ}C]$ to $350[^{\circ}C]$ at intervals of $50[^{\circ}C]$. and annealing temperature an effect on the thin film was changed from $200[^{\circ}C]$ to $400[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM.

  • PDF

The Effect of Solid Solution Heat-Treatment Temperature on the Tensile Property in Intermediate Thermo-Mechanical Treated Al-Li Alloys (중간가공열처리한 AI-Li계 합금의 인장성질에 미치는 용체화처리온도의 영향)

  • Yoo, C.Y.;Lee, K.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.37-41
    • /
    • 1991
  • In this study, the effect of solution treatment temperature on the tensile property in intermediate thermo-mechanical treated Al-Li alloys are investigated. After the intermediate thermo-mechanical treated Al-Li, Al-Li-Mg and Al-Li-Mg-Zr alloys were solution treated at various temperatures (500, 520 and $540^{\circ}C$), these were aged at $190^{\circ}C$, $240^{\circ}C$ and tested tensile properties. The results obtained from the experiment are as follows ; 1) The optimum solution heat-treatment temperature is $540^{\circ}C$ for a Al-Li alloy, and the recrystallized grain size is about $70{\mu}m$. 2) The optimum solution heat-treatment temperature is $500^{\circ}C$ for a Al-Li-Mg alloy, and the recrystallized grain size is the most coarse in all alloys. 3) The tensile property is independent of the solution treatment temperature in a Al-Li-Mg-Zr alloy, and the recrystallized grain size is the finest owing to addition of Zr.

  • PDF

A Study on Dyeing of Silk with Different Reactive Dyes (반응성염료의 반응기에 따른 견섬유염색에 관한 연구)

  • 정지인;류효선
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.73-80
    • /
    • 1992
  • The influence of four types of reactive dyes that are different in reactive group on silk fabric were investigated at three different temperatures, 5$0^{\circ}C$, 7$0^{\circ}C$, 9$0^{\circ}C$ and the pH range from 7.0 to 11.0. The amount of absorption and fixation showed the optimum condition. The damage of silk during dyeing was determined by the change of physical properties. The results are given as follows: 1. The amount of dye fixed on fabrics at constant pH varied upon the reactivity of dyes. The affinity of dyes for silk fabrics were in order of Lanasol>Procion>Remazol>Cibacron. 2. The percentage of dye fixation on fabrics showed different tendency with temperature. The dye fixation of Cibacron and Procion was decreased above 7$0^{\circ}C$ because of the influence of hydrolysis. The dye fixation of Lanasol and Remazol was increased with the increase of temperature. This showed that temperature did not affect on hydrolysis. 3. The tensile strength of dyed fabric decreased with increasing pH and temperature owing to high temperature and alkaline damage on silk fabric. 4. The optimum conditions of dyeing silk with reactive dyes were as follows: Cibacron -7$0^{\circ}C$, pH 9.0, Procion-5$0^{\circ}C$, pH 7.0, Remazol-5$0^{\circ}C$, pH 8.0, and Lanasol-9$0^{\circ}C$, pH 9.0.

  • PDF