• Title/Summary/Keyword: Optimum Sensitivity

Search Result 619, Processing Time 0.03 seconds

Estimation of Permeability of Green Sand Mould by Performing Sensitivity Analysis on Neural Networks Model

  • Reddy, N. Subba;Baek, Yong-Hyun;Kim, Seong-Gyeong;Hur, Bo Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.107-111
    • /
    • 2014
  • Permeability is the ability of a material to transmit fluid/gases. It is an important material property and it depends on mould parameters such as grain fineness number, clay, moisture, mulling time, and hardness. Modeling the relationships among these variable and interactions by mathematical models is complex. Hence a biologically inspired artificial neural-network technique with a back-propagation-learning algorithm was developed to estimate the permeability of green sand. The developed model was used to perform a sensitivity analysis to estimate permeability. The individual as well as the combined influence of mould parameters on permeability were simulated. The model was able to describe the complex relationships in the system. The optimum process window for maximum permeability was obtained as 8.75-10.5% clay and 3.9-9.5% moisture. The developed model is very useful in understanding various interactions between inputs and their effects on permeability.

Fabrication and Characteristics of the MAGFET (MAGFET의 제작 및 특성)

  • Kim, Si-Hon;Lee, Cheol-Woo;Lee, Jung-Hwan;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • We have simulated the operating characteristics of the magnetotransistor(MAGFET) by the finite element method and suggested the optimum design conditions to get a maximum sensitivity, The magnetotransistor has been fabricated by CMOS standard processing according to the suggested design conditions and investigated its electromagnetic characteristics. The sensitivity of the magnetotransistor depends on the ratio of width(W) to length(L) of active area rather than its size, and has a maximum when W/L = 1. The relative sensitivity of a fabricated magnetotransistor was 2.53 %/T.

  • PDF

Gas Sensing Characteristics and Doping Effect of $MoO_3$ Thin Films prepared by RF magnetron sputtering (RF magnetron sputtering법으로 제조한 $MoO_3$ 박막의 가스 감지 특성 및 첨가물의 영향)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.460-463
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in $O_2$ atmosphere by RF reactive sputtering using Molybdenum metal target. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}mtorr$ and all deposited films were annealed at $500^{\circ}C$ for 5hours. To investigate gas sensing characteristics of the addition doped $MoO_3$ thin film, Co, Ni and Pt were used as adding dopants. The sensing properties were investigated in tenn of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO at optimum working temperature. Co-doped $MoO_3$ thin film shows the maximum 46.8% of sensitivity in $NH_3$ and Ni-doped $MoO_3$ thin film exhibits 49.7% of sensitivity in $H_2$.

  • PDF

Heartbeat Detection based on Signal Reflected from Antenna in Mobile Device (휴대기기에서의 안테나 반사 신호를 이용한 심박 신호 검출)

  • An, Yong-Jun;Yun, Gi-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.643-649
    • /
    • 2013
  • In this paper, human heartbeat detection using signal reflected from the antenna which is varied reflection coefficient by near field variation of the antenna. For detection reflected signal from antenna, 20 dB directional coupler is used because of not affecting transmitting signal. Variance of reflection coefficient of dipole antenna is about 0.07 dB which is too small the distinction between heartbeat and noise. Sensitivity increasing method is applied and heartbeat is clearly detected. Due to phase and magnitude errors come from discrete value components, antenna is located some points in experiments ro find optimum sensitivity position. And providing verification of using communication signal, heartbeat detection when frequency modulated signal which have 4 MHz bandwidth is applied.

Life Cycle Cost & Reliability Analysis of Quaywall Design Parameters (안벽 설계변수의 신뢰성 해석과 생애주기비용 분석)

  • Kim, Hong-Yeon;Yoon, Gil-Lim;Yoon, Yeo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.508-518
    • /
    • 2008
  • Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.

  • PDF

Gas Sensing Characteristics and Doping Effect of MoO3Thin Films Sensor (박막형 MoO3가스센서의 가스 감지 특성 및 첨가물의 영향)

  • 황종택;장건익;윤대호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.705-710
    • /
    • 2003
  • MoO$_3$thin films were deposited on electrode of alumina substrates in $O_2$atmosphere by RF reactive sputtering using molybdenum metal target. The deposition was performed at 30$0^{\circ}C$ with 350 W of a forward power in an Ar-O$_2$atmosphere. The working pressure was maintained at 3$\times$10$^{-2}$ torr and all deposited films were annealed at 50$0^{\circ}C$ for 5 hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by using a XRD. To investigate gas sensing characteristics of the doped MoO$_3$thin film, Co, Ni and Pt were used as dopants. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as H$_2$, NH$_3$and CO at optimum working temperature. Co-doped MoO3 thin film shows the maximum 46.8 % of sensitivity in NH$_3$ and Ni-doped MoO$_3$thin film exhibits 49.7 % of sensitivity in H$_2$.

A Study on Sensitivity to Temperature of Electricity Consumption in School Buildings (학교 건축물 전력소비의 기온감응도에 관한 연구)

  • Kim, Tae-Woo;Lee, Kang-Guk;Kim, Ho-Soon;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.5
    • /
    • pp.13-21
    • /
    • 2011
  • In case of school buildings, energy consumption has been noticeably on the increase, along with the changes in outdoor temperature triggered by the improvement in national economic development and educational environments. Research on the characteristics of energy consumption in school buildings influenced by the changes in outdoor temperature is considered very significant in social aspects in that it will be fundamental to the suggestion of the alternatives, such as saving energy consumption in construction buildings and control of emitting carbon dioxide. In this regard, this study examined sensitivity to temperature of power consumption in school buildings, based on the changes of outdoor temperature for the past five years in the target buildings of elementary, middle and high schools and the amount of energy consumption. From the results, it has been believed that this study was very significant in terms of figuring out a quantitative, optimum level of energy consumption, maintenance of pleasant environments and functions, and the necessity of effective energy use and management in school buildings.

  • PDF

A Study on the Weight Minimization of an Automobile Engine Block by the Optimum Structural Modification (최적구조변경법에 의한 자동차 엔진 블록의 중량최소화에 관한 연구)

  • 김영군;박석주;김성우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.326-332
    • /
    • 1997
  • Recently to develop an automobile with better prosperities, many researches and investments have been executed. In this paper we intend to improve the automobile properties by reducing the weights of the engine without changing the dynamic characteristics. At first we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the engine model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. The weight minimization is performed by the Sensitivities of the Natural frequencies of the engine block. To decrease the engine weight ideally, the parts of the sensitivity zero are to be cut mainly, and the changing quantity of natural frequency by the cut is to be recovered by the structural modification for the parts with the good sensitivity. But, as actually the mathematical solution for the homogeneous problem(i.e. 0 object function) do not exist, we hereby redesign the block with much thinner thickness and recover the natural frequencies and natural modes to original structure's by the sensitivity analysis. And the Frequency Response Functions(FRF) are to be observed for the interesting points. In this analysis, the original thickness of the engine model has 8 mm of thickness, and the thickness redesigned is 5 mm and 6 mm. And we are to try to recover the 1, 2, 4, and 5 lower natural frequencies interested.

  • PDF

A Study on the Sensitivity of Self-Powered Neutron Detectors(SPNDs) and a new Proposal

  • Lee, Wanno;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.445-450
    • /
    • 1997
  • Self-Powered Neutron Detectors(SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position fur the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage.

  • PDF

Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System (수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석)

  • Bae, Sangmu;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.