• Title/Summary/Keyword: Optimum Mix

Search Result 326, Processing Time 0.03 seconds

Bond Strength of Mortar mixed Activated Hwangtoh

  • Go, Seong-Seok;Yeo, Sang-Ku;Lee, Hyun-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.468-477
    • /
    • 2012
  • This study aimed to mix and test mortar incorporating activated Hwangtoh to improve the Hwangtoh brick bond strength of brick structures. To do this, the bond strength correlation of mortar was analyzed by means of materials and experiment factors and levels, and the optimum conditions were suggested after analyzing the physical properties of brick and the mix ratio of mortar and additive. Furthermore, the compressive strength and bond strength were found to be in inverse proportion, and in terms of the materials and mixing level, W/C ratio, substitution ratio of activated Hwangtoh, and fine aggregate grading were shown to have a considerable influence on the strength. In conclusion, the optimum mixing conditions to improve the bond strength are found to set W/C ratio at 65% and replacmenet ratio of activated Hwangtoh at 10%.

Optimum Concrete Mix-proportion based on Database according to Assessment Model for Effective Region (유효 영역 판별 모델에 따른 데이터베이스 기반 콘크리트 최적 배합 선정)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.909-912
    • /
    • 2006
  • This paper examined the applicability of convex hull, which is defined as the minimal convex polygon including all points, to assessment model for effective region. In order to validate the applicability of the convex hull to assessment model for effective region, a genetic algorithm was adopted as a optimum technique, and an artificial neural network was adopted as a prediction model for material properties. The mix-proportion obtained from the proposed technique is more reasonable than that obtained from previous work.

  • PDF

Mutagenic Activity of Smoke Flavoring Processed from Oak and Apple Wood on Manufacturing Temperature (굴참나무와 사과나무로부터 제조한 훈연액의 제조온도에 따른 돌연변이원성에 관한 연구)

  • 강희곤;이경호;홍희선;박상진;김창한
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.203-208
    • /
    • 1998
  • The study was carried out to screen mutagenicity of smoking materials for the determination of optimum smoking temperature for meat products. Wood materials employed for smoking were oak and apple trees. Temperatures of the generator for manufacturing of smoke flavoring were set to 250$^{\circ}C$, 400$^{\circ}C$ and 500$^{\circ}C$, respectively. Mutagenic activities of smoke flavoring were assayed according to Ames test using Salmonella typhimurium TA98 and TA 100. In oak wood smoke flavoring, Salmonella typhimurium TA98 without S-9 mix showed strong mutagenic activities at the concentration of 6$\mu\textrm{g}$/plate(250$^{\circ}C$), 4$\mu\textrm{g}$/plate(400$^{circ}C$) and 6$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA100 with S-9 mix showed strong mutagenic activities at the concentration of 10$\mu\textrm{g}$/plate(250$^{\circ}C$), 20$\mu\textrm{g}$/plate(400$^{\circ}C$) and 10$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA98 with S-9 mix showed strong mutagenic activities at the concentration of 30$\mu\textrm{g}$/plate(250$^{\circ}C$), 40$\mu\textrm{g}$/plate(400$^{\circ}C$) and 20$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA100 with S-9 mix showed strong mutagenic activities at the concentration of 30$\mu\textrm{g}$/plate(250$^{\circ}C$), 50$\mu\textrm{g}$/plate(400$^{\circ}C$) and 20$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA100 without S-9 mix showed strong mutagenic activities at the concentration of 10$\mu\textrm{g}$/plate(250$^{\circ}C$), 20$\mu\textrm{g}$/plate(400$^{\circ}C$) and 20$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA98 with S-9 mix showed strong mutagenic activities at the concentration of 30$\mu\textrm{g}$/plate(250$^{\circ}C$), 40$\mu\textrm{g}$/plate(400$^{\circ}C$) and30$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA100 with S-9 mix showed strong mutagenic activities at the concentrations 30$\mu\textrm{g}$/plate(500$^{\circ}C$). Salmonella typhimurium TA100 with S-9 mix showed strong mutagenic activities at the concentration of 30$\mu\textrm{g}$/plate(250$^{\circ}C$), 20$\mu\textrm{g}$/plate(400$^{\circ}C$) and 30$\mu\textrm{g}$/plate(500$^{\circ}C$). From these results, it could be concluded that optimum smoking temperature for meat products should be set below 400$^{\circ}C$, that the compounds like benzo[a]pyrene etc. contain a variety of mutagenic potentials, which could be generated at the higher smoking temperature.

  • PDF

An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks

  • Parichatprecha, Rattapoohm;Nimityongskul, Pichai
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.253-268
    • /
    • 2009
  • This study aims to develop a cost-based high-performance concrete (HPC) mix optimization system based on an integrated approach using artificial neural networks (ANNs) and genetic algorithms (GA). ANNs are used to predict the three main properties of HPC, namely workability, strength and durability, which are used to evaluate fitness and constraint violations in the GA process. Multilayer back-propagation neural networks are trained using the results obtained from experiments and previous research. The correlation between concrete components and its properties is established. GA is employed to arrive at an optimal mix proportion of HPC by minimizing its total cost. A system prototype, called High Performance Concrete Mix-Design System using Genetic Algorithm and Neural Networks (HPCGANN), was developed in MATLAB. The architecture of the proposed system consists of three main parts: 1) User interface; 2) ANNs prediction models software; and 3) GA engine software. The validation of the proposed system is carried out by comparing the results obtained from the system with the trial batches. The results indicate that the proposed system can be used to enable the design of HPC mix which corresponds to its required performance. Furthermore, the proposed system takes into account the influence of the fluctuating unit price of materials in order to achieve the lowest cost of concrete, which cannot be easily obtained by traditional methods or trial-and-error techniques.

Properties of the high strength and self-compacting concrete according to the replacement ratio of fly ash (플라이애쉬의 치환율에 따른 고강도 자기충전 콘크리트의 특성)

  • Kwon, Yeong-Ho;Lee, Hyun-Ho;Lee, Hwa-Jin;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.85-88
    • /
    • 2006
  • This study describes the optimum mix proportion of the high strength and self-compacting concrete placed in main structures of LNG above tank. This concrete requires high strength level about $60{\sim}80MPa$, low hydration heat, balance between workability and consistency without vibrating in the actual work. For this purpose, low heat portland cement and fly ash are selected and design factors including water-binder ratio, replacement ratio of fly ash are tested. As experimental results, low heat portland cement shows lower the confined water ratio than another cement type and the optimum replacement ratio of fly ash in order to improve properties of the binder-paste shows 10% by cement weight considering test results of the confined water ratio$({\beta}p)$. Also, flowability of the high strength and self-compacting concrete by using fly ash about $10{\sim}20%$ is improved. The replacement ratio of fly ash 10% and water-binder ratio $25{\sim}27%$ are suitable to the design strength 80MPa and cost, In case of the design strength 60MPa, the replacement ratio of fly ash and water-binder ratio show 20% and $25{\sim}30%$ separately. Based on the results of this study, the optimum mix proportions of the high strength and self-compacting concrete will be applied to the construction of LNG above tank as a new type.

  • PDF

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

A Study on Perpendicular Flame Retardant Characteristic Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition (나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 수직난연 특성 향상에 관한 연구)

  • Hwang, Chan-Yun;Yang, Jong-Seok;Seong, Baeg-Yong;Kim, Ji-Yeon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.51-56
    • /
    • 2015
  • The object of this study is to obtain the optimum mix proportion of halogen free compound with flame resistance and, for the purpose, thermal/electrical characteristics test are conducted using compatibilizing agents, flame resistance agents, hydroxide aluminum, sunscreen, antioxidant and silicon oil on the base resin of linear low density polyethylene (LLDPE), Ethylene vinyl acetate copolymer (EVA). Existing compound method accompanies many requirements to be satisfied including a lot of addition of flame resistance agents, prohibition of impact on mixing capability with base and property and etc. In this study, different from the existing method, the optimum mix proportion is determined and experimented by adding nano clay. Oxygen index test shows no difference between specimens while T-6, T-9 shows oxygen index of 29[%] and 26[%], respectively. This is concluded that hydroxide aluminum, which is a flame resistance agent, leads low oxygen index. From UL94-V vertical flame resistance test, the combustion behavior is determined as V-0, Fail based on UL94-V decision criteria. Viscometry shows low measurements in specimens with separate addition of compatibilizing agents or nano clay. Volume resistivity test shows low measurement mainly in specimens without compatibilizing agents. Therefore, with the flame resistance compound shows better performance for thermal/electrical property and the optimum mix proportion are achieved among many existing materials.