• Title/Summary/Keyword: Optimum Mix

Search Result 326, Processing Time 0.021 seconds

Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete

  • Esparham, Alireza;Moradikhou, Amir Bahador;Andalib, Faeze Kazemi;Avanaki, Mohammad Jamshidi
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.219-229
    • /
    • 2021
  • In recent years, geopolymer cements, have gained significant attention as an environmental-friendly type of cement. In this experimental research, effects of different alkaline activator solutions and variations of associated parameters, including time of addition, concentration, and weight ratio, on the mechanical strengths of Granulated Ground Blast Furnace Slag (GGBFS)-based Geopolymer Concrete (GPC) were investigated. Investigation of the effects of simultaneous usage of KOH and NaOH solutions on the tensile and flexural strengths of GGBFS-based GPC, and the influence of NaOH solution addition time delay on the mechanical strengths is among the novel aspects investigated in this research. four series of mix designs and corresponding specimen testing is conducted to study different parameters of the active alkali solutions on GPC mechanical strengths. The results showed that addition of NaOH to the mix after 3 min of mixing KOH and Na2SiO3 with dry components (1/3 of the total mixing duration) resulted in the highest compressive, tensile and flexural strengths amongst other cases. Moreover, increasing the KOH concentration up to 12 M resulted in the highest compressive strength, while weight ratio of 1.5 for Na2SiO3/KOH was the optimum value to achieve highest compressive strengths.

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF

Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix

  • Fattah, Mohammed Y.;Al-Saidi, A'amal A.;Jaber, Maher M.
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.113-132
    • /
    • 2015
  • In this study, lime (L), silica fume (SF), and lime-silica fume (L-SF) mix have been used for stabilizing and considering their effects on the soft clay soil. The improvement technique adopted in this study includes improving the behaviour, of a square footing over soft clay through grouting the clay with a slurry of lime-silica fume before and after installation of the footing. A grey-colored densified silica fume is used. Three percentages are used for lime (2%, 4% and 6%) and three percentages are used for silica fume (2.5%, 5%, 10%) and the optimum percentage of silica fume is mixed with the percentages of lime. Several tests are made to investigate the soil behaviour after adding the limeand silica fume. For grouting the soft clay underneath and around the footing, a 60 ml needle was used as a liquid tank of the lime-silica fume mix. Slurried silica fume typically contains 40 to 60% silica fume by mass. Four categories were studied to stabilize soft clay before and after footing construction and for each category, the effectiveness of grouting was investigated; the effect of injection hole spacing and depth of grout was investigated too. It was found that when the soft clay underneath or around a footing is injected by a slurry of lime-silica fume, an increase in the bearing capacity in the range of (6.58-88)% is obtained. The footing bearing capacity increases with increase of depth of grouting holes around the footing area due to increase in L-SF grout. The grouting near the footing to a distance of 0.5 B is more effective than grouting at a distance of 1.0 B due to shape of shear failure of soft clay around the footing.

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;최응규;김진근;이칠성;이상순
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.167-175
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix proportions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate shrmkage of mortar. The water /cement ratio used in construction field is about 64% by the investigation. Even if the water /cement ratio of mortar is reduced, floor mortar is still able to have the required workability by the appropriate use of the fine aggregate with high fineness mo'dulus and superplastizer. The equations hetween mortar flow and water /cement ratio, sand /cement ratio, fineness modulus of fine aggregate were proposed in this study. And the proposed equation may provide available mix proportions of floor mortar.

Suggesting Optimum Mix Proportion of Hardener for Soil-pavement Concrete Incorporating Natural Organic Lime and Magnesia-lime (천연유기석회 및 고토석회를 조합한 흙 포장 콘크리트용 경화재의 최적배합안 도출)

  • Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Lots of soil-pavement concrete placed showed a number of problems such as decreasing strength, and durability. In this research, to provide a solution of the problem reported the wasting materials of natural organic lime and magnesia lime were used as a hardener to achieve sufficient performance of soil-pavement concrete. Namely, as a stimulus of blast furnace slag, the natural organic lime and magnesia lime were tested within the mix proportion of 0 to 10 % for each lime to make a new hardener. As a result, in the case of mortar with 1 to 3 % of cement to fine aggregate, 30 % replaced blast furnace slag showed the more favorable results with 5 to 5 % of mix proportion for natural organic lime and magnesia lime.

A Study on the Optimum Cement Content of High Strength Concrete (고강도 콘크리트의 적정 단위시멘트량 선정 방안)

  • Lee, Jang Hwa;Kim, Sung Wook;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.173-179
    • /
    • 2003
  • Currently, in the mix design of high strength concrete, cement content depend on the target slump which is fixed with tests. However this cause high content cement use because it is based on the mix design of normal strength concrete. Also, comparatively high content cement might decrease the durability of the concrete. Therefore, in this study, we investigated proper cement content satisfying durability, workability, compressive strength, and reviewed use of admixtures, proper sand-aggregate ratio to the cement content. The results indicate that cement content ranging $370{\sim}550kg/m^3$ did not affect the compressive strength. The field workers should consider durability, workability as well as compressive strength for determining the optimal cement content in the mix design of the high strength concrete.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture (레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.

The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures (아스팔트 혼합물의 물리적 특성을 이용한 간접인장강도의 특성 분석)

  • Lee, Moon Sup
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • PURPOSES : This study was performed to evaluate the possibility of Indirect Tensile Strength (ITS) as a testing method that can predict cracking on pavement. METHODS : Three asphalt binders and one kind of aggregate were used in this study, and all asphalt mixtures were produced using Gyratory Compactor followed asphalt mix design. The ITS test was performed for the mixture which are artificially short-term aged using the oven. The ITS properties were analyzed by air void, compaction temperature, asphalt content, and asphalt binder. RESULTS : The results of this study indicated that (1) the compaction temperature did not show relationship with the ITS test; (2) there was no specific trend between the asphalt content and the ITS test; (3) the ITS could reveal the property of kinds of asphalt binders; (4) the asphalt mixture that were produced at optimum temperature suggested by manufacturer did not exhibit optimum result for all asphalt binder. CONCLUSIONS : The possibility of ITS was confirmed from this study for replacement of the Marshall Stability method. However, it needs to perform in further studies of aggregate and compaction property to suggest a new ITS standard value.

Optimization of Flowable Fill with High Volume Fly Ash Conten (다량의 플라이애시를 사용한 고유동 충전재의 최적배합설계)

  • 원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.81-90
    • /
    • 1999
  • The purpose of this study is to examine the uses of fly ash asa type of construction material. This paper presents the results of research performed to identify optimum mix proportions for production of lowable fill with high volume fly ash content . The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The flowable fill with high volume fly ash content was investigated for strength and flowability characteristics. Tests were carried out on flowable fill designed to have 10 ~15kgf/$\textrm{cm}^2$ compressive strength at 28 days with fly ash contents of approximately 260kgf/㎥. Slump was held at 25$\pm$1cm for all mixtures produced to range from 5kgf/$\textrm{cm}^2$ to 14kgf/$\textrm{cm}^2$ compressive strengths at 28 days. To produce flowable fill with high volume fly ash , first the influential variables were identified in an experimental study based on factorial design. Among the proportioning variables investigated, cement ,fly ash, and sand contents were found to have statistically significant effect on strength and slump of flowable fill . Subsequently, response surface analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected influential variables based on material properties and cost. The optimized flowable fill were then technically evaluated. It is shown that flowable fill has acceptable compressive strength , slump flow, hardening time, and permeability.

  • PDF