• Title/Summary/Keyword: Optimum Die

Search Result 217, Processing Time 0.024 seconds

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

Optimization of Die Design for Tube Cold Extrusion using Taguchi Method (다구치 방법을 이용한 튜브 냉간 압출 금형의 최적화)

  • Lim, S.S.;Lim, S.J.;Choi, H.J.;Cho, C.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.153-158
    • /
    • 2006
  • Nowadays, hollow upper-shaft of monobloc type has been considered for weight reduction and high quality in the automobile industry. To form the upper-shaft under tube cold extrusion, Taguchi method is applied to optimize the die design in this study. Taguchi method for optimum die design is to establish the optimal combination of design parameters and to reduce a number of experiments. Effect of parameters including the die relief, mandrel, die half angle is investigated and analyzed based on FEA analysis using a FEM commercial software MSC_Marc. Furthermore extrusion experiments have been performed to verify the results investigated in the FEM simulations.

  • PDF

The Effect of Die Design and Process Condition in Precision Forging for AI7075 (ll) (AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(ll) -유한요소해석을 중심으로-)

  • 이영선;이정환;이상용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.113-121
    • /
    • 1996
  • AI7075 alloy has been used for aircraft components since it has the advantage of high strength, high toughness, and high corrosion resistance. Many airframe components consist of various combinations of rib-web structure. In this study, various process paramenters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment and F.E.M. simulation to develop the precision forging technology for AI7075. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

A Design Methodology for The Minimum DIE Area of Power MOSFET's Considering Thermal Resistance of the Package (Package 의 열저항을 고려한 전력용 MOSFET의 최소 DIE 면적 설계)

  • Kim, Soo-Seong;Kim, Il-Jung;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1286-1288
    • /
    • 1993
  • An analytical method for the optimum design of the minimum die size in power MOSFETs is presented. The proposed methodology considers the thermal resistance of the package and gives the minimum die area for desired drain current levels. The results are compared with experimental data and it is found that the die size mar be reduced if it is designed according to the proposed design procedure.

  • PDF

The Effects of the Process and Die Design for Precision Forging of Al Alloys (AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

A Study on the Wire Drawing of Stainless Steel (스테인리스 와이어의 인발에 관한 연구)

  • Park, Kang-Geun;Choi, Won-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-78
    • /
    • 2007
  • Stainless steel is very famous for using of industrials structure and joint elements. Stainless steel wire drawing is one of the most ancient crafts. But there's not any standard size of tapered die during tile drawing. This paper was studied die angle and dimension of whole die by using AFDEX drawing simulator. Stress, metal flow and strain rate was analyzed by AFDEX tools during the wire drawing. So optimum data of during dies was taken from them. Simulation data was correspond with experimental data. The results of the optimum dies are shown that (1) Reduction angle is $13.8^{\circ}$ (2) Bark relief angle is $20^{\circ}$ (3) Bearing length is 0.7975mm (4) Bearing dia is 0.2393mm The research of the optimum result when the make dies is connected an enterprise. After researching, I hope that indirection effect creation make development situation of the manufactural technical, practical application of the other die size by the detail data, utility factor and economical efficiency.

  • PDF

Extrusion Process of Barley Flour for Snack Processing (스낵제조를 위한 보리의 압출성형공정)

  • Mok, Chul-Kyoon;Pyler, R.E.;Mcdonald, C.E.;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.429-436
    • /
    • 1984
  • To expand the utility of barley the experiments on the extrusion characteristics of barley flour for snack processing were carried out and the effects of the extrusion conditions on the quality of the extrudates were investigated. The optimum moisture content of barley flour for snack processing was 20%. The moisture content and the density of the extrudates decreased with increasing extrusion temperature and decreasing die size. The die swell ranged from 0.98 to 2.18 according to various extrusion conditions and decreased with increasing temperature above $150^{\circ}C$. The lightness, redness and yellowness increased at higher temperature. The water absorption index and the water solubility index showed their maximum values at $180^{\circ}C$.The gelatinization degree of the extrudates increased with increasing temperature. The fracture fore, Young's modulus and maximum fiber stress decreased, but the deformation to fracture increased, with increasing temperature and decreasing die size. The yield force in puncture test showed lower values at higher temperature. The size and the fraction of the air cells increased with increasing temperature and decreasing die size. The optimum extrusion conditions of barley for snack processing were at the temperature of $180^{\circ}C$, with the die size of 4.5mm when processed at 160 rpm.

  • PDF

A Study on the Process Planning and Die Design of Cold-Forging Using Personal Computer(I) (퍼스널 컴퓨터에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구( I ))

  • 최재찬;김병민;진인태;김형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.712-720
    • /
    • 1988
  • This paper describes some development of computer-aided system called "COLD-FORMING" and "DESIGN-DIE". "COLD-FORMING" is designed for the forming sequence and "DESIGN-DIE" for the die design of press forming rotationally symmetric parts. The computer program developed is used in interactive and written in BASIC. Design rules for process planning and die design are formulated from process limitations, plasticity theory and know-how of experience of the field. "COLD-FORMING" capabilities include (1) analysis of forming sequence and recognition of individual operation involved each step, (2) determination of intermediate shape and dimensions, (3) calculation of forming loads to perform each forming operation and (4) graphic out put for the operation sheet. "DESIGN-DIE" capabilities include (1) optimum die design corresponding to the output of "COLD-FORMING" and (2) graphic output for the die design.of "COLD-FORMING" and (2) graphic output for the die design.ie design.

Design and Analysis of precision Forging Process by Utilizing Pneumatically Operated Enclosed Die Set (공압식 폐쇄다이세트 적용 정밀단조공정 설계 및 해석기술)

  • Lee, K.S.;Eom, D.H.;Kang, S.H.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.382-386
    • /
    • 2009
  • This paper describes design and analysis techniques of cold forging process for precise producing of T-200 type spider made of SCr420H by utilizing pneumatically operated enclosed die set. Since deducing feasible closing force is an important factor to optimize entire pneumatically operated cold forging system, a series of FE analyses with varying the number of gas cylinders has been carried out to investigate the influence of closing force upon the direction of applied load at die surfaces. It also reveals the optimum distribution of the gas cylinders in terms of the flatness of upper/lower plates.

  • PDF