• 제목/요약/키워드: Optimum Design Variable

검색결과 299건 처리시간 0.023초

혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구 (A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm)

  • 강신재;김기완;유기완;송기정
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.7-13
    • /
    • 2002
  • 본 논문에서는 새로운 형태의 혼합형 유전 알고리즘을 제안하고 성능을 검증한 후 30kW 피치제어 가변 풍력발전시스템의 블레이드 설계와 피치제어 최적화에 적용하여 주어진 Weibull 분포함수에서 동력을 최대화하는 최적의 블레이드 시위 및 비틀림각의 분포와 작동범위내에서 동력을 일정하게 유지하기 위한 최적의 피치각을 결정하였다.

핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계 (Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness)

  • 강형석
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계 (Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package)

  • 남현욱
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

복합적층 하니콤 코어형 샌드위치 판무구조물의 진동특성을 고려한 최적설계 (Optimum Design of the Laminated Composite Sandwich Plate Structure of Honeycomb Core considering Vibration Characteristics)

  • 서진;홍도관;안찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.710-715
    • /
    • 1997
  • This paper deals with the analysis of the optimum value of honeycomb core considering variable design parameter. As thickness and height of core rises in design parameter, natural frequency of laminated composite plate increases. The angle-phy has the maximum value when the plate of honeycomb core join to opposite direction. This paper shows that the natural frequency of CFRP was higher than that of GFRP and mode shapes were various at angle-ply.

  • PDF

CAE에 기반한 DACE 모델을 이용한 버터플라이밸브 디스크의 최적설계 (Optimization of Butterfly Valve's Disc Using the DACE Model Based on CAE)

  • 박영철;강정호;이종문;강진
    • 한국해양공학회지
    • /
    • 제20권3호
    • /
    • pp.96-102
    • /
    • 2006
  • The butterfly valve has been used to control the switch and flux of fluid. While research about the characteristics of butterfly valve fluid have been done, study of the optimum design, considering structural safety, must keep pace with it. Thus, a method is proposed for an optimum butterfly valve. Initially, the stability of the butterfly valve, using FEM and CFD, is evaluated, and a variable is selected using the initial analysis results. Also, the shape optimization design is accomplished using the DACE model. In terms of research results, the experiment satisfied the objective and limitation functions.

중부하용 가변속 카메라 회전대 개발에 대한 연구 (A study on the development of variable speed camera for heavy duty)

  • 김주한;성하경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.299-300
    • /
    • 2006
  • The camera and reduction mechanism that are equipment outdoors camera for general CCTV are miniaturization trend gradually. The foreign countries began to sell variableness speed type camera drivels that do DC voltage by motive power recently. But, Domestic is state that enterprise which has technology connected with this does not exist. We need optimum control program design, an internal organs technology, actuator interface and a driver design technology that have position control special quality of high accuracy as a necessary technology for CCTV camera drivers. Also, we need detailed mechanism design and a manufacture technology of camera drivers that behave variable speed essentially.

  • PDF

심해 자율 무인잠수정(AUV)의 내압선체 설계 최적화 (Design Optimization of Pressure Vessel of Small Autonomous Underwater Vehicle)

  • 정태환;노인식;이판묵;이종무;임용곤
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents the optimum design of cylindrical shell under external pressure loading. Two kinds of material, Al7075-T6, Ti-6Al-4V, are considered. For each material, the design variable is a thickness of the unstiffened parallel middle body shell, and the state variable, constraint, is hoop stress and the object .function is total weight of the cylindrical shell. Optimization is performed by conventional FE Program, ANSYS. In addition, buckling analysis is performed for the middle body of the cylindrical shell. Finally, we calculates the payload of the cylindrical shell to keep neutral buoyancy with optimized thickness in deep-sea applications.

가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계 (Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm)

  • 홍진현;박종권;최영휴
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.