• Title/Summary/Keyword: Optimum Design Condition

Search Result 784, Processing Time 0.02 seconds

Response Surface Methodology for Optimization of the Removal of Organic Matters in Eutrophic Waters by Korean Freshwater Bivalves (반응표면분석을 이용한 패류의 부영양수 유기물 제어능 연구)

  • Choi, Hwan-Seok;Nam, Gwi-Sook;Kim, Min-Seob;Shin, Hyun-Jae;Park, Myung-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • This study was conducted to establish models of filtrating rate and production of feces of a native freshwater bivalve, Anodonta woodiana, on removal organic matters in eutrophic waters. Among the applied shell size (4.3~15.5 cm), the filtrating rate and production of feces of Anodonta woodiana was $0.08{\sim}0.86L\;g^{-1}\;h^{-1}$ (average $0.24L\;g^{-1}\;h^{-1}$), $0.00{\sim}11.10mg\;g^{-1}\;h^{-1}$ (average $0.94mg\;g^{-1}\;h^{-1}$), respectively. In two different water current (high $48Lh^{-1}$, low $24Lh^{-1}$), the filtrating rate of Chl-a was $0.02{\sim}0.10L\;g^{-1}\;d^{-1}$ (average $0.05L\;g^{-1}\;d^{-1}$), $0.02{\sim}0.11L\;g^{-1}\;d^{-1}$ (average $0.07L\;g^{-1}\;d^{-1}$) and the removal rate was 65.4%, 82.1%, respectively. Response surface methodology, with a central composite design comprising 3 levels and 2 variables, was used to identify the optimal removal condition of shell length, water current and filtrating rate or feces production by bivalves. The optimum removal conditions were found that had optimized $6.21L\;mussel^{-1}\;d^{-1}$ at shell length 14.3~15.6 and water current $22{\sim}30Lh^{-1}$. The optimal conditions of production of feces ($4.2mg\;g^{-1}\;d^{-1}$) by freshwater mussels were shell length 14.3~16.3 cm and water current $36{\sim}44Lh^{-1}$.

Experimental Study for the Development of the Mixing Ratio as a Compaction Pile (다짐말뚝 재료로서 쇄석과 저회의 적정 혼합비 도출을 위한 실험적 연구)

  • Leem, Hansoo;Kim, Sunkon;Lee, Jooho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.5-16
    • /
    • 2012
  • In the case of using the soil materials created by cutting in-situ ground directly without adjusting particle size, it is recommendable to seek the compaction property or material constant required for filling design or density control through indoor test, and many studies on this subject have been carried out during that time. The researches conducted during that time, however, were focused on the mixed materials with different diameters that exist in a natural condition. There has been no study conducted using coal fly ash that is by-product of the thermal power plant that is actively considered as the building materials. Therefore, this study was aimed at implementing compaction test and examining the basic engineering property in order to explore the influence of crushing the particles through compacting the admixture of crushed stone and coal fly ash produced from thermal power plant on its engineering property, and then the impact of the admixture volume of each material on compaction property and material property by conducting the One-Dimensional Compression Test. As result of compaction test, the optimum moisture ratio of coal fly ash was shown to be approx. 23%. As result of compaction test in accordance with the mixed ratio of coal fly ash and crushed stone under the same compaction energy and moisture ratio, dry unit weight tended to drop when the mixed ratio of coal fly ash exceeded 30%, while it reached approx. $1.81gf/cm^3$ when the mixed ratio was 30%. As result of One-Dimensional Compression Test in accordance with the mixed ratio of crushed stone and coal fly ash, the change in void ratio by particle crushing was at the highest level in the case of coal fly ash 100%, while the lowest level in the case of crushed stone 100%. In the case of mixed materials of crushed stone and coal fly ash, compression index was at the lowest level in case of coal fly ash 30%, and therefore this ratio of mixed material was judged to be the most stable from an engineering aspect.

A Study on Balanced -type Oseillating Mole-Drainer(III)-Model Test for Draft Force, Torque, Power and Moment (평행식 진동탄환 암거 천공기의 연구(III)-견인력, 토크, 동력 및 모멘크에 관한 모형시험-)

  • 김용환
    • Journal of Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • This paper is the third one of the study on balanced type oscillating mole-drainer, the first one was presented in No 9. Gyeongsang College Report and the second one in Vol. 17, No.4 of the KSAE. In the first part of this study, the characteristics of traction forces between the nonoscillating earth working equipments and oscillating ones was compared. A model of the balanced type oscillating mole-drainer, which composed of a mechanism that may reduce the machine vibration, was designed following the dimensional analysis and similitude technique. The model test was carried out to clarify the balancing mechanism of the oscillating parts and other parts of the machine. In the light of the results from the model tests, a prototype machine was made for experimental purpose. Results from the field test by a reported in the near future. In the second report, the model tests were carried out under the same soil conditions, i.e, . oscillating frequency, running velocity, and oscillating amplitude, etc. It was clear that use of balanced type oscillating model could substantially reduce the vibration of the whole system of the machine, when compared with the nonoscillating type model. In this paper(the third report), results of investigation on the traction force, power requirement, and moment. etc, is presented. Analysis of variance technique was used for analyzing the effect of the frequency, amplitude, and running velocity on the draft force, torque, power requirements, and moments. The results obtained from the model tests are as follows, 1) By practicing a balanced-type oscillating mole-drainer, it was possible to reduce the traction resistance by 55.1-61. 2 percent of traction resistance, however, was 1.75 - 1.95 times greater than the value of resistance which was induced by use of a mole-drainer with single bullet. The resistance of rear shank against soil was considered as a main causing factor of the above results. 2) As the oscillation frequency was increased, the traction resistance was decreased. Considering on the effect of oscillation the greater the amplitude, and the slower the running velocity was, the greater the reduction ratio of traction resistance was. 3) The ratio of the traction resistance of oscillating mole-drainer to that of non-oscillating one could be represented as a function of dimensionless variable (V/$Af$). The results from the tests were well agreed with the reported results from the experim ents on oscillation plow or hoe. 4) By taking a lower value of (V/$Af$), reducing the traction resistance was possible. This fact meant, however, that the efficiency of mole drain practice would be lower. 5) It was experimentally confirmed under the same condition of soil that the variable (R/$rD1^3$) could be represented as a function of a variable($V^2/gD$) when a non\ulcornerocillating mole-drainer was used. 6) When a oscillating mole-drainer was used, the variable(R/$rD_1^{3}$) could be represented as a function of two variables ($v^2/gD_1$) and (V^2/gD_1$). 7) The torque was not affected by a change of frequency. However, a relation of proportionality existed between torque and amplitude, running velocity, and ratio of bullet diameter. When a balanced type oscillating mole-drainer with two bullets was used, torque was increased by 52.8-78. 4 percent and total power requirement was also increased. 8) Total power requirement was increased linearly in accordance with the increasing frequency, 41.96 percent of total power was used for oscillating action. The magnitude of total power requirement was 1. 8-9. 4 times greater than that of a non-oscillating mechanism. In the view point of power requirement, it was not advisable to increase the frequency, amplitude, running velocity, and ratio of bullet diameter at the same time. 9) Only the positive moment occured in the rear shank. Change of the diameter of a rear bullet, could not affect the balancing against the soil resistance. It was necessary for rear bullet to have a large resistance against soil only when the rear bullet was in backward motion. 10) Within an extent of the experimental base, optimum limits for several design factors were A=0.5cm, $f$=22.5Hz, V=O. 05m/sec, and $\lambda$=1.0 By adapting these values traction resistance was reduced by 40 percent and vibration acceleration wa s reduced by 60 percent. Even though the total , power requirements for operating a balanced type oscillation mechanism was greater ~than that of non-oscillating one, using a oscillating mechanism would be more effective. Because a balanced type oscillating mechanism is used, tractive resistance will be reduced and then the lighter . tractive equipment could be used.

  • PDF

Sensory Characteristics of Mae-jak-gwa with Persimmon Powder (감가루를 첨가한 매작과의 관능적 특성)

  • 이희해;고봉경
    • Korean journal of food and cookery science
    • /
    • v.18 no.2
    • /
    • pp.216-224
    • /
    • 2002
  • Persimmon powder (PW), which was prepared by pulverizing freeze-dried persimmon with peels, was added to Maejakgwa up to 25% of wheat flour. Maejakgwa samples were prepared by the central composit experimental design for three independent variables: amount of PW, frying time, and frying temperature. The color of Maejakgwa was influenced more by the frying time and temperature than the content of added PW. Crispiness and adhesiveness were highly correlated with overall preference. Although the amount of PW affected the adhesiveness, the adhesiveness could be controlled by the frying temperature and time. Frying temperature was the most effective factor on the crispness and hardness. The addition of high amount of PW obviously increased the sweetness and aftertaste. However, at the low amount of PW, frying for longer time at high temperature also increased the sweetness and aftertaste. Center sample (15% PW, frying for 4 min at 145$\^{C}$) showed the best score at the overall preference. Overall preference was improved as the sample was fried at high temperature/short time or at low temperature/long time. Maejakwa prepared with high amount of PW at 20% showed no significant difference with the center sample for overall preference as prepared by frying for 3 min at 155$\^{C}$. The optimum condition obtained by superimposing color, crispiness and overall preference was frying for 5∼6 min at 131∼140$\^{C}$.