• Title/Summary/Keyword: Optimum Algorithm

Search Result 1,626, Processing Time 0.03 seconds

Simulator Development for GEO (Geostationary Orbit)-Based Launch Vehicle Flight Trajectory Prediction System (정지궤도 기반 발사체 비행 궤적 추정시스템의 시뮬레이터 개발)

  • Myung, Hwan-Chun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2022
  • The missile early-warning satellite systems have been developed and upgraded by some space-developed nations, under the inevitable trend that the space is more strongly considered as another battle field than before. As the key function of such a satellite-based early warning system, the prediction algorithm of the missile flight trajectory is studied in the paper. In particular, the evolution computation, receiving broad attention in the artificial intelligence area, is applied to the proposed prediction method so that the global optimum-like solution is found avoiding disadvantage of the previous non-linear optimization search tools. Moreover, using the prediction simulator of the launch vehicle flight trajectory which is newly developed in C# and Python, the paper verifies the performance and the feature of the proposed algorithm.

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF

Stackelberg Game between Multi-Leader and Multi-Follower for Detecting Black Hole and Warm Hole Attacks In WSN

  • S.Suganthi;D.Usha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.159-167
    • /
    • 2023
  • Objective: • To detect black hole and warm hole attacks in wireless sensor networks. • To give a solution for energy depletion and security breach in wireless sensor networks. • To address the security problem using strategic decision support system. Methods: The proposed stackelberg game is used to make the spirited relations between multi leaders and multi followers. In this game, all cluster heads are acts as leaders, whereas agent nodes are acts as followers. The game is initially modeled as Quadratic Programming and also use backtracking search optimization algorithm for getting threshold value to determine the optimal strategies of both defender and attacker. Findings: To find optimal payoffs of multi leaders and multi followers are based on their utility functions. The attacks are easily detected based on some defined rules and optimum results of the game. Finally, the simulations are executed in matlab and the impacts of detection of black hole and warm hole attacks are also presented in this paper. Novelty: The novelty of this study is to considering the stackelberg game with backtracking search optimization algorithm (BSOA). BSOA is based on iterative process which tries to minimize the objective function. Thus we obtain the better optimization results than the earlier approaches.

Predicting the rock fragmentation in surface mines using optimized radial basis function and cascaded forward neural network models

  • Xiaohua Ding;Moein Bahadori;Mahdi Hasanipanah;Rini Asnida Abdullah
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.567-581
    • /
    • 2023
  • The prediction and achievement of a proper rock fragmentation size is the main challenge of blasting operations in surface mines. This is because an optimum size distribution can optimize the overall mine/plant economics. To this end, this study attempts to develop four improved artificial intelligence models to predict rock fragmentation through cascaded forward neural network (CFNN) and radial basis function neural network (RBFNN) models. In this regards, the CFNN was trained by the Levenberg-Marquardt algorithm (LMA) and Conjugate gradient backpropagation (CGP). Further, the RBFNN was optimized by the Dragonfly Algorithm (DA) and teaching-learning-based optimization (TLBO). For developing the models, the database required was collected from the Midouk copper mine, Iran. After modeling, the statistical functions were computed to check the accuracy of the models, and the root mean square errors (RMSEs) of CFNN-LMA, CFNN-CGP, RBFNN-DA, and RBFNN-TLBO were obtained as 1.0656, 1.9698, 2.2235, and 1.6216, respectively. Accordingly, CFNN-LMA, with the lowest RMSE, was determined as the model with the best prediction results among the four examined in this study.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

A Microphone Array Beamforming Algorithm with Inverse Filtering of Relative Transfer Functions in Car Environments (상대전달함수의 역필터링을 이용한 자동차 환경에서의 마이크로폰 어레이 빔형성 기법)

  • Kang Hong-Goo;Hwang Youngsoo;Youn Dae-Hee;Han Chul-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • In this paper. we Propose a frequency domain beamforming algorithm composed of inverse-filtering stages followed by a MVDR (Minimum-Variance Distortionless Response) beamformer or a GSC (Generalized Sidelobe Canceller). The proposed method is shown to require less complexity than the conventional RTF-MVDR and TF-GSC. respectively, and it is shown that the Proposed method is equivalent to the conventional RTF-MVDR and TF-GSC in optimum solution. In order to evaluate the performance of the Proposed method. speech recognition experiments are performed using the speech database recorded in a car. The Proposed method shows equal or slightly degraded Performance comparing to the conventional methods in terms of the speech recognition rate.

Finding the optimum shape of the energy dissipator to minimize the impact force due to the dam break flow

  • Asrini Chrysanti;Sangyoung Son
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.157-169
    • /
    • 2024
  • The sudden release of water from a dam failure can trigger bores on a flat surface and exert substantial impact forces on structures. This flow poses a high-risk flood hazard to downstream urban areas, making it imperative to study its impact on structures and devise effective energy dissipators to mitigate its force. In this study, a combination of Genetic Algorithm optimization and numerical modeling is employed to identify the optimal energy dissipator. The analysis reveals that a round arc-shaped structure proves most effective, followed by a triangular shape. These shapes offer wide adaptability in terms of structure dimensions. Structures with higher elevation, especially those with round or triangular shapes, demonstrate superior energy dissipation capabilities. Conversely, square-shaped structures necessitate minimal height to minimize impact forces. The optimal width for dissipating energy is found to be 0.9 meters, allowing for effective wave run-up and propagation. Furthermore, the force exerted on structures increases with higher initial water levels, but diminishes with distance from the dam, highlighting the importance of placement in mitigating impact forces.

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.

Performance Analysis of Receiver for Underwater Acoustic Communications Using Acquisition Data in Shallow Water (천해역 취득 데이터를 이용한 수중음향통신 수신기 성능분석)

  • Kim, Seung-Geun;Kim, Sea-Moon;Yun, Chang-Ho;Lim, Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.303-313
    • /
    • 2010
  • This paper describes an acoustic communication receiver structure, which is designed for QPSK (Quadrature Phase Shift Keying) signal with 25 kHz carrier frequency and 5 kHz symbol rate, and takes samples from received signal at 100 kHz sampling rate. Based on the described receiver structure, optimum design parameters, such as number of taps of FF (Feed-Forward) and FB (Feed-Back) filters and forgetting factor of RLS (Recursive Least-Square) algorithm, of joint equalizer are determined to minimize the BER (Bit Error Rate) performance of the joint equalizer output symbols when the acquisition data in shallow water using implemented acoustic transducers is decimated at a rate of 2:1 and then enforced to the input of receiver. The transmission distances are 1.4 km, 2.9 km, and 4.7 km. Analysis results show that the optimum number of taps of FF and FB filters are different according to the distance between source and destination, but the optimum or near optimum value of forgetting factor is 0.997. Therefore, we can reach a conclusion that the proper receiver structure could change the number of taps of FF and FB filters with the fixed forgetting factor 0.997 according to the transmission distance. Another analysis result is that there are an acceptable performance degradation when the 16-tap-length simple filter is used as a low-pass filter of receiver instead of 161-tap-length matched filter.