• Title/Summary/Keyword: Optimized shape

Search Result 837, Processing Time 0.029 seconds

Application of Chiu's Two Dimensional Velocity Distribution Equations to Natural Rivers (Chiu가 제안한 2차원 유속분포식의 자연하천 적용성 분석)

  • Lee, Chan-Joo;Seo, Il-Won;Kim, Chang-Wan;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.957-968
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for quantitative management for water resources. Thereafter such real-time streamflow gauging methods as ultrasonic flowmeter and index-velocity are introduced recently. Since these methods calculate flowrate through entire cross-section by measuring partial velocities of it, rational and theoretical basis are necessary for accurate estimation of discharge. The purpose of the present study lies in analysis on the applicability of Chiu#s(1987, 1988) two dimensional velocity distribution equations by applying them to natural rivers and by comparing simulated velocity distributions with observed ones obtained with ADCP. Maximum and mean velocities are calculated from observed data to estimate entropy parameter M. Such isovel shape parameters as h and $\beta_i$ are estimated by object function based on least squares criterion. In case optimized parameters are applied, Chiu#s velocity distributions fairly well simulate observed ones. By using 14 simulated data sets which have relatively high correlation coefficients, properties of parameters are analyzed and h, $\beta_i$ are estimated for velocity-unknown river sections. When estimated parameters are adopted for verification, simulated velocity distributions well reproduce real ones. Finally, calculated discharges display rough agreement with measured data. The results of the present study mean that if parameters related are properly estimated, Chiu#s velocity distribution is likely to reproduce the real one of natural rivers.

Pattern Recognition Analysis of Two Spirals and Optimization of Cascade Correlation Algorithm using CosExp and Sigmoid Activation Functions (이중나선의 패턴 인식 분석과 CosExp와 시그모이드 활성화 함수를 사용한 캐스케이드 코릴레이션 알고리즘의 최적화)

  • Lee, Sang-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1724-1733
    • /
    • 2014
  • This paper presents a pattern recognition analysis of two spirals problem and optimization of Cascade Correlation learning algorithm using in combination with a non-monotone function as CosExp(cosine-modulated symmetric exponential function) and a monotone function as sigmoid function. In addition, the algorithm's optimization is attempted. By using genetic algorithms the optimization of the algorithm will attempt. In the first experiment, by using CosExp activation function for candidate neurons of the learning algorithm is analyzed the recognized pattern in input space of the two spirals problem. In the second experiment, CosExp function for output neurons is used. In the third experiment, the sigmoid activation functions with various parameters for candidate neurons in 8 pools and CosExp function for output neurons are used. In the fourth experiment, the parameters are composed of 8 pools and displacement of the sigmoid function to determine the value of the three parameters is obtained using genetic algorithms. The parameter values applied to the sigmoid activation functions for candidate neurons are used. To evaluate the performance of these algorithms, each step of the training input pattern classification shows the shape of the two spirals. In the optimizing process, the number of hidden neurons was reduced from 28 to15, and finally the learning algorithm with 12 hidden neurons was optimized.

A Study on the Optimization of Anti-Jamming Trash Screen with Rake using by Response Surface Method (반응표면분석법을 이용한 제진기의 목메임 방지 개선 및 레이크 최적화)

  • Seon, Sang-Won;Yi, Won;Hong, Seok-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.230-236
    • /
    • 2020
  • A trash screen is installed in front of the inflow channel of a drainage pumping station, sewage treatment plant, and a power plant to block floating contaminants. The bottleneck phenomenon, which decreases the water inflow, causes damage to the damper as a result of clogging in between the screen if string type obstacles are not removed. In this paper, the apron was removed, and the screen was expanded, to prevent breakage of the bottleneck phenomenon and string type obstacles. This was designed using an extended rake by adding an inner rake in between the screen interspace to remove the bottleneck phenomenon and string type obstacles. To design the inner rake that satisfies the allowable stresses of the existing damper rake, the experiment points were determined according to the experimental design method using the inner rake vertical length and the thickness of the reinforced section as parameters. The use of the ANSYS static structural module and statistical analysis tool R software gives the optimized shape according to the response surface method. The relative error between the response surface analysis results and the simulation results was 1.63% of the determined optimal design-point rake length of 210.2 mm and the reinforcement section thickness of 2 mm. Through empirical experiments, a test rake was constructed to the actual size, and approximately 97% of the bottleneck phenomenon and string type obstacles could be removed.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

Preparation and Characterization of $CaCO_3$ Encapsulation by PMMA Core-Shell latex (PMMA와 캡슐화된 $CaCO_3$ Core-Shell 라텍스 제조와 물성연구)

  • Lim, Jong-Min;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.303-315
    • /
    • 2003
  • Inorganic/organic composite particles were also synthesized by changing an initiator an it's concentration, concentration of an adsorbed surfactant, reaction temperature, and agitation speed in the presence of $CaCO_3$ adsorbed SDBS. The polymerization conditions were optimized according to the conversion of the core-shell composite particles. In the inorganic/organic core-shell composite particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt % was prepared first and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA, concentration of APS $3.16{\times}10^{-3}mol/L$ to minimize the formation of new PMMA particle during MMA shell polymerization. The structure characterization of the inorganic/organic core-shell particles was verified by measuring the decomposition degree of $CaCO_3$ using HCl solution. It was found that $CaCO_3$ was encapsulated by shell PMMA due to having excellent dispersion in the epoxy resin, smooth surface distinctly from spindle shape, and broad particle distribution after the capsulation.

Development of 3X Scope with Objective Configured with Doublet+Meniscus Lens (더블렛+메니스커스렌즈 대물부를 가지는 3X 스코프 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.487-492
    • /
    • 2014
  • Purpose: This study relates to the development of the 3X scope, whose objective part is configured with a doublet + a meniscus lens. Methods: By the initial condition of the objective part having a configuration of a doublet + a singlet, we could optimize the optical system of scope in order to minimize the finite ray aberrations of the objective part and the whole optical system of scope, and so we could develope a new type 3X scope. Results: On the condition of the objective part having a configuration of a doublet + a singlet, when the optical system of scope was optimized in order to minimize the finite ray aberrations, we could find that the singlet became the meniscus type lens having the concave shape to the direction of the doublet, and the longer the distance between the doublet and the meniscus lens is, the more the finite ray aberrations are minimized. Conclusions: In this study, we could develope a new type 3X scope of which finite ray aberrations can be reduced to 1/14 than the existing scope by adopting the objective part of the 3X scope having a configuration of three lenses composed of a doublet + a singlet. We could confirm that this reduction of aberrations can be a means to increase the effective aperture than the existing scope and to shorten the length of the optical system.

Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis

  • Maus, Irena;Kim, Yong Sung;Wibberg, Daniel;Stolze, Yvonne;Off, Sandra;Antonczyk, Sebastian;Puhler, Alfred;Scherer, Paul;Schluter, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.321-334
    • /
    • 2017
  • Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus, were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

-1 Mode Circular Polarization Antenna Design by Using Cross Aperture-Coupled Feed (십자 개구 결합 급전을 이용한 -1 모드 원형 편파 안테나)

  • Kim, Jun-Sik;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.156-163
    • /
    • 2014
  • In this paper, a compact circularly polarized metamaterial patch antenna using cross aperture-coupled feed is proposed. The CP antenna utilizes the -1 mode that is induced by the composit right-left handed(CRLH) transmission line. Since the -1 mode has the same properties with the $TM_{010}$ mode of the conventional patch antenna, the circular polarization(CP) can be realized. If two orthogonal modes are excited with $90^{\circ}$ phase difference, the CP property can be obtained. In order to obtain two orthogonal modes and $90^{\circ}$ phase difference, 4 mushroom structures having the shape of square are employed. The width and length of the cross aperture are optimized through the design algorithm. The fabricated antenna is based on RT/duroid5880 substrate and the total area of the 4 mushroom is $0.25{\lambda}_0{\times}0.25{\lambda}_0$. The center frequency of the LHCP(Left-Handed Circular Polarization) antenna is measured as 1.622 GHz and circular polarization bandwidth(3 dB) is measured as 3 MHz. The center frequency of the RHCP(Right-Handed Circular Polarization) antenna is measured as 1.609 GHz and circular polarization bandwidth (3 dB) is measured as 3 MHz, respectively. The measured radiation efficiency of LHCP antenna is 61.1 % and the measured radiation efficiency of RHCP antenna is 54.5 %.